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Presentation

The Combinatorics 2022 conference is organised by the research groups in combinatorial
geometry and design theory of the University of Modena and Reggio Emilia, University of
Parma and University of Verona. It takes place from May 30 to June 3 2022 in Mantua, in
the rooms of the campus of Fondazione UniverMantova. This is the 21st edition of this
conference held in Italy; originally it was scheduled for 2020, but it has been delayed due
to the pandemic. The main themes of the conference are Finite and Incidence Geometries,
Combinatorial Designs and Graph Theory.
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• Gábor Korchmáros

• Guglielmo Lunardon

• Giuseppe Mazzuoccolo
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• Giovanni Zini
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The p-rank of curves of Fermat type
Herivelto Borges

Universidade de São Paulo, Inst. de Ciências Matemáticas e de Computação,
São Carlos, Brazil

Joint work with: C. Gonçalves

Abstract
LetX be a nonsingular projective curve of genus g > 0, defined over an

algebraically closed fieldK of characteristic p > 0. Arithmetic and geometric
properties ofX are often encoded in its birational invariants, some of which are
the genus, the automorphism group, and the p-rank. The latter is the integer
γ(X ), with 0 ≤ γ(X ) ≤ g, such that J [p](K) ∼= (Z/pZ)γ(X ), where
J [p] is the kernel of the multiplication-by-pmorphism on the jacobian J of
X . That is, γ(X ) is the number of copies of Z/pZ in J , or equivalently, the
number of independent unramified abelian p-extensions of the function field
K(X ).

The study of the p-rank is fundamental for a number of problems related
to the classification of curves over finite fields. For instance, it is well-known
that curves with somewhat large automorphism groups have zero p-rank. On
the other hand, a conjecture by Guralnick and Zieve states that ifX is ordinary,
that is, γ(X ) = g, then |Aut(X )| ≤ cg8/5. Other important topics, such
as curves attaining the Hasse-Weil bound, can be naturally connected to the
study of the p-rank.

In this talk, we discuss some problems and recent results regarding the
characterization of the p-rank of certain families of curves. In particular, we
will show how one can easily determine the p-rank of curves of type ym =
xn+1. In addition, we will present and discuss a few combinatorial challenges
intrinsically related to our approach and results.
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Functions over finite fields and their applications
Bence Csajbók

Polytechnic University of Bari (Italy)

Abstract
For a function f : Fq → Fq , q = pn, p prime, the graph of f is the affine

point setUf = {(x, f(x)) : x ∈ Fq}. The set of directions determined by
f is

dirf =
{
f(x)− f(y)

x− y
: x, y ∈ Fq, x 6= y

}
⊆ Fq.

ExtendAG(2, q)with ideal points and with the line at infinity `∞. For d ∈
Fq ∪{∞} denote by (d) the ideal point associated to the parallel class of lines
with slope d and defineDf = {(d) : d ∈ dirf} ⊆ `∞. The point sets Uf

andDf have been used to construct and characterise various combinatorially
defined points sets of PG(2, q), such as Rédei type blocking sets, Korchmáros–
Mazzocca arcs, ovals, semiovals, sets without tangents.

After a series of papers by Rédei, Megyesi, Ball, Blokhuise, Brouwer, Szőnyi,
Storme, it is known that |Df | < b(q + 3)/2c implies f(x) = α + g(x),
whereα ∈ Fq and g(x) is a linearised polynomial, i.e. g(x) =

∑n−1
i=0 aix

pi .
We will present a result which can provide useful information onUf also when
Df is large, but some additional combinatorial properties are satisfied.

Let A and B denote an additive and a multiplicative subgroup of Fq,
respectively. Thanks to results by Carlitz, McConnel, Bruen, Levinger, the
functions with the property dirf ⊆ B are completely described. We will
consider some related problems, such as dirf ⊆ A, dirf ⊆ B ∪ {0} and
dirf = dirh, where f andh are linearised. Finally, we will turn our attention to
linearised polynomials and present somematricial techniqueswith applications,
e.g. in the proof of the completeness of certain small caps in PG(4n+ 1, q),
q > 2.

The talk is based on joint works withA. Aguglia, A. Cossidente, G.Marino,
F. Pavese, O. Polverino, F. Zullo and Zs. Weiner.

Keywords: functions over finite fields, direction problem, linearised polynomial
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σ-geometries of finite projective spaces
Nicola Durante

University of Naples (Italy) — Department of Maths. and Appls.

Abstract
The sets of the absolute points of (possibly degenerate) polarities of a pro-

jective space are well known and deeply studied being (possibly degenerate)
quadrics, symplectic spaces and Hermitian varieties.
We cannot say the same for the sets of the absolute points of (possibly de-
generate) correlations, different from polarities. Apart from the planar non
degenerate finite case that was studied and solved by B.C. Kestenband in 11
papers from 1990 to 2014, until 2019 nothing else was known.
In June 2019, the author gave a course [1] introducing the concept of a σ-
quadric of a finite projective space, σ being an automorphism of the underlying
field, starting the study of the sets of absolute points of a (possibly degenerate)
correlation, different from a polarity, of a finite projective space. It turns out
that the study of σ-quadrics is far more difficult than the study of quadrics,
symplectic spaces and Hermitian varieties. Nevertheless, in some recent papers
with co-authors J. D’haeseleer, G. Donati, G.G. Grimaldi σ-quadrics related
to degenerate correlations, in spaces of low (at most 5) dimensions have been
classified. They turn out to be related to: ovoids of quadrics, spreads of three
dimensional projective space, flocks of cones, arcs, hyperovals of even order
projective planes, translation planes and non linear MRD codes.
Moreover, σ-quadrics have also been the geometic object inspiring the idea of
(d,σ)-Veronese varieties to the author, G. Longobardi and V. Pepe.

Keywords: correlations, sesquilinear forms, automorphism

References
[1] N. Durante Geometry of sesquilinear forms. Notes of a course given at the workshop Finite

geometry and friends, Bruxelles, June 2019.
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Tensors in Finite Geometry
Michel Lavrauw

Sabancı University, Istanbul

Abstract
The concept of tensor products is ubiquitous in the scientific literature.

The bulk of the research on such tensor products assumes the underlying field
to be the real numbersR or the complex numbersC. With the advancement of
our knowledge and the development of new technology, the need for efficient
algorithms to verify certain properties or compute numerical data from a given
tensor has become a very popular research topic. In this talk we restrict our
attention to the tensor product of a finite number of finite-dimensional vector
spaces over a finite field. We will give a short introduction explaining the main
concepts and research problems, and report on recent results in this area.
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Generating Uniformly Distributed Random Steiner
Triple Systems
Patric R. J. Östergård

Aalto University — Department of Communications and Networking
School of Electrical Engineering
P.O. Box 15400, 00076 Aalto, Finland

Abstract
A few methods for generating random Steiner triple systems (STSs) have

been proposed in the literature, such as Cameron’s algorithm (which is ana-
logous to the Jacobson–Matthews algorithm for Latin squares) and Stinson’s
hill-climbing algorithm. To improve the understanding of these algorithms, an
assessment is here carried out for STSs of both small and large orders. Some vari-
ants of Stinson’s algorithm are further proposed. For large orders, the number
of occurrences of certain configurations in the generated STSs are compared
with the corresponding expected values of random hypergraphs. This is joint
work with Daniel Heinlein.
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On certain compositions and decompositions of
configurations

Tomaž Pisanski
University of Primorska (Slovenia)

Abstract

Compositions form a fundamental tool in the synthetic approach to con-
figurations. They constitute a class of operations that turn input parameters
into a new configuration. There are primarily two such classes of operations,
depending on the nature of parameters. In case of integer parameters, the
so-called families of configurations are constructed, eg. cyclic and polycyclic
configurations, [2]. On the other hand, the operations of Grünbaum calculus
are typical synthetic methods that compose large configurations from smaller
ones [3, 5].

In the opposite direction, a decomposition takes a configuration and decom-
poses it into smaller incidence structures. Together with calculation of some
invariants, decompositions constitute the analytic approach to configurations,
[4, 7]. Both compositions and decompositions have been considered by various
geometers already in the nineteenth century. For instance, configurations that
may be viewed as mutually inscribed multilaterals were quite popular; for an
early account on configurations, see [6].

In this talk we present the basic theory and give an overview of some
compositions and decompositions that we used in our research, combined
with some specific applications, e.g. to splittability, [1], that form our work in
progress with several colleagues, mainly with Leah Berman and Gábor Gévay.

A partition of an (nk) configuration into t subconfigurations is called a
t-decomposition of configuration of type (r, s), r ≥ s, if all parts have the same
symbol (pr, qs) or complementary symbol (qs, pr). In this talk we restrict our
attention to 2-decompositions of configurations. A particular case, when all
parts are isomorphic or complementary is investigated in connection with the
self-duality of the original configuration. 2-decompositions of 3-configurations
and 4-configurations are presented in more detail. We present an algorithm
for generating and analysing non-isomorphic configurations admitting certain
2-decompositions.
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Combinatorial Requirements for Large Scale
Experimentation

Violet R. Syrotiuk
Arizona Staate University — School of Computing, Informatics and

Decision Systems Engineering
Joint work with: Charles J. Colbourn, John Stufken, and Yasmeen Akhtar

Abstract
Engineered networks play a critical role in our society. Some examples of

such networks and their use include:
• the power grid for smart homes and cars,
• the Internet and wireless networks for education, business, and entertain-

ment,
• transportation networks for the supply chain,
• green house gas monitoring networks using satellites,
• airborne drones and ground sensors across the world for supporting fight-

ing forest fires,
• global networks instruments and data centers for scientific discovery,

and beyond.
The role of such networks is expected to continue to expand both in scale

and scope, yet our understanding of them remains limited. These networks
have evolved into complex systems with behaviours and characteristics that
are beyond the characterizations and predictions possible using traditional
modelling, analysis, and design approaches.

Experimentation is one method to understand engineered systems. The
discipline of design and analysis of experiments provides a theoretical basis
for experimentation with a long tradition of connections to algebra, geometry,
and combinatorics.

While experimentation can be used for many purposes, our interest is
in screening experiments, to identify the important factors that significantly
impact the system responses. There are assumptions and limitations underlying
many screening designs. Most designs only consider a set of factors that is “not
too large,” with two levels for each factor, and are not able to treat categorical
factors. Further, the designs often miss unexpected behaviours resulting from
cross-system interactions. In the analysis of the measurements gathered in the
experiment, it is often assumed that the corresponding design is balanced, that
the system reports in every run, the direction of a response is known for specific
factors, and the data are normally distributed.
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Overcoming such assumptions and limitations based on experimental
needs of engineered networks lead to a number of challenging and novel prob-
lems in combinatorics, which we discuss.
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Perfect 1-factorisations and hamiltonian Latin squares
Ian M. Wanless

Monash University — School of Mathematics
Vic 3800, Australia

ian.wanless@monash.edu

Abstract
A 1-factorisation of a graph is a decomposition of the edges of the graph

into 1-factors (perfect matchings). The 1-factorisation is perfect if the union of
any two of its 1-factors is a Hamilton cycle. Kotzig famously conjectured that
the complete graphK2n has a perfect 1-factorisation (P1F) for every positive
integer n. Despite considerable attention, we are very far from proving this
conjecture. Only 3 sparse infinite families have been constructed, together with
some sporadic orders. Several exhaustive enumerations have recently revealed
that there are 3155 P1Fs ofK16.

For P1Fs of the complete bipartite graphKn,n our state of knowledge is
marginally better, with 7 sparse infinite families published. A P1F of Kn,n

is equivalent to a row-Hamiltonian Latin square of order n. These are Latin
squares with no non-trivial Latin subrectangles; equivalently, the permutation
which maps any row to any other row is an n-cycle. Each Latin square has
six conjugates (also called parastrophes) obtained by uniformly permuting its
(row, column, symbol) triples. Let ν(L) denote the number of conjugates of
L that are row-Hamiltonian. It is easy to see that ν(L) ∈ {0, 2, 4, 6} and
that ν = 0 can be achieved for all n > 3. At the other extreme, ν = 6 is
achieved by the so-called atomic Latin squares, including the Cayley tables
of cyclic groups of prime order. There is also a known infinite family with
ν = 2. We announce the first infinite family with ν = 4. It allows us to build
Latin squares in which every pair of rows form a Hamilton cycle and no pair of
columns form a Hamilton cycle. As a corollary, we will answer a question on
quasigroup varieties posed by Falconer in 1970.
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Papillon graphs: perfect matchings, Hamiltonian
cycles and edge-colourings in cubic graphs

Marién Abreu
Università degli Studi della Basilicata (Italia)

Dipartimento di Matematica, Informatica ed Economia
Joint work with: John Baptist Gauci; Domenico Labbate; Federico Romaniello; Jean Paul Zerafa

Abstract
A graphG has the Perfect-Matching-Hamiltonian property (is PMH) if

for each one of its perfect matchings, there is another perfect matching ofG
such that the union of the two perfect matchings yields a Hamiltonian cycle of
G. The study of graphs that are PMH, initiated in the 1970s by Las Vergnas
and Haggkvist, combines three ¨ well-studied properties of graphs, namely
matchings, Hamiltonicity and edge-colourings. In this talk, we present results
for cubic graphs in an attempt to characterise those cubic graphs for which
every perfect matching corresponds to one of the colours of a proper 3-edge-
colouring of the graph. We discuss that this is equivalent to saying that such
graphs are even-2-factorable (E2F), that is, all 2-factors of the graph contain
only even cycles. The case for bipartite cubic graphs is trivial, since if G is
bipartite then it is E2F. Thus, we restrict our attention to non-bipartite cubic
graphs. A sufficient, but not necessary, condition for a cubic graph to be E2F is
that it is PMH. We introduce an infinite family of non-bipartite cubic graphs,
which we term papillon graphs, and determine the values of the parameters for
which these graphs are PMH or are just E2F.

Keywords: Cubic graph, perfect matching, Hamiltonian cycle, 3-edge-colouring.

37



Sam
Adriaensen13

8
5

3
2

21st
1 1 Combinatorics 2022

Mantova, Italy, 30 May – 3 June 2022

M
SC

(2
01

0)
:0

5B
25

,0
5C

50
,0

5E
30

,5
1E

20
M
SC

(2
01

0)
:0

5B
25

,0
5C

50
,0

5E
30

,5
1E

20

Stability of EKRTheorems in Circle Geometries
Sam Adriaensen

Vrije Universiteit Brussel (Belgium) — Department of Mathematics and
Data Science

Abstract
Erdős-Ko-Rado (EKR) theorems deal with the classification of large inter-

secting families. Take an incidence structure with points and blocks, and call a
subsetF of the blocks an intersecting family if any two elements ofF share a
point. Then one wonders how large an intersecting family can be, and what
structure intersecting families of large size must have. In most settings, the only
way to construct intersecting families whose size is close to being maximal, is
by fixing a point and taking all blocks through this point.

A fruitful approach to EKR problems is constructing a graph where the
blocks are the vertices, and adjacency coincides with being disjoint. We want
to prove that the only large cocliques in this graph are canonical, i.e. consist of
blocks through a fixed point. Our strategy is using the expander mixing lemma
to prove that an intersecting familyF has either a small or a large intersection
with a canonical coclique. Then we prove that the intersection ofF with some
canonical coclique is not small, hence large, which forcesF to be a subset of
this coclique.

This technique is applied in the context of circle geometries [1], which cap-
ture the behaviour of oval plane sections in PG(3, q)with quadrics containing
at most one singular point. We prove that all blocks in an intersecting family
of size at least 1√

2
q2 +O(q) contain a fixed point. We note that the number

of blocks through a point is q2 +O(q).

Keywords: Erdős-Ko-Rado; Algebraic graph theory; Circle geometries.

References
[1] S. Adriaensen. “Stability of Erdős-Ko-Rado Theorems in Circle Geometries”, (arxiv:2201.06067),
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On certain quasi-Hermitian varieties and related
questions

Angela Aguglia
Politecnico di Bari (Italy)

Joint work with: Luca Giuzzi

Abstract
A two-character set in the projective spacePG(r, q) is a setS of n points

with the property that the intersection number with any hyperplane only takes
two values. The study of two-character sets is motivated by their connection to
projective two-weight codes and (linearly represented) strongly regular graphs.
If a two-character set V and a Hermitian variety inPG(r, q2) have the same
intersection numbers with hyperplanes then V is a quasi-Hermitian variety. A
Hermitian variety can be viewed as a classical quasi-Hermitian variety. In [1],
non-classical quasi-Hermitian varieties Mα,β of PG(r, q2) depending on a
pair of parametersα, β from the underlying fieldGF(q2), were constructed.
For r = 2 these varieties are Buekenhout-Metz (BM) unitals, see [3]. We study
the equivalence of the quasi-Hermitian varietiesMα,β in PG(3, q2) with q
odd and show that they behave under this respect in a similar way as BM-unitals
in PG(2, q2); see [2]. Furthermore, we prove that the point-collinearity graph
ofMα,β is connected for q ≡ 1 (mod 4) (which is the only interesting case)
and, in this talk, we also point out the relationship betweenMα,β and certain
secrete sharing schemes.

Keywords: Algebraic variety, Hermitian variety, unital
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q-Matroids and rank-metric codes
Gianira N. Alfarano

University of Zurich (Switzerland) — Institute of Mathematics

Joint work with: Eimear Byrne

Abstract
In classical combinatorics, matroids generalize the notion of linear inde-

pendence of vectors over a field. In this talk, we will introduce the concept of
Fqm-independence of Fq-spaces and we show that q-matroids generalize this
notion. As a consequence, the independent spaces of a representable q-matroid
will be defined as the Fqm-independent subspaces of the q-system associated to
an Fqm-linear rank-metric code. Moreover, we will further investigate the link
between codes and matroids.

Keywords: q-matroids; rank-metric codes; independence.
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Polynomials with maximal differential uniformity and
the exceptional APN conjecture

Yves P. Aubry
University of Aix Marseille and Toulon (France) — Department of

Mathematics
Joint work with: Fabien Herbaut and Ali Issa

Abstract
The differential uniformity of a polynomial f ∈ Fq[x] over a finite field

Fq is defined by δFq(f) := max(α,β)∈F∗
q×Fq ]{x ∈ Fq | f(x+α)−f(x) =

β}.
Polynomials f such that δF2n

(f) = 2 are highly relevant in cryptography
and are called APN (for Almost Perfect Nonlinear). Polynomials which are
APN over infinitely many extensions of F2 are called exceptional APN.

Extending results from [1] and [2], we prove that for infinitely many even
degreesm, for n sufficiently large, all polynomials of degreem with a nonzero
second leading coefficient have a maximal differential uniformity. This implies
of course that such polynomials are not exceptional APN. Form = 4ewhere e
is a Gold number, this gives a contribution to the exceptional APN conjecture.

Theorem. Letm = 2r(2` + 1) where gcd(r, `) ≤ 2 and r ≥ 2 and ` ≥ 1.
For n sufficiently large, for all polynomials f =

∑m
k=0 am−kx

k ∈ F2n[x] of
degreem such that a1 6= 0 the differential uniformity δ(f) is maximal that is
δ(f) = m− 2. In particular, f is not exceptional APN.

Keywords: Differential uniformity; APN functions; Chebotarev theorem.
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On strongly regular graphs with 136 vertices
Robert F. Bailey

Memorial University (Canada) — Grenfell Campus

Joint work with: Alaina Pardy, Abigail Rowsell

Abstract
In this talk, we will consider strongly regular graphs with parameters

(136, 63, 30, 28). The best-known example of such a graph is NO−
8 (2), a

rank-3 graph arising from the groupPSO−(8, 2). However, another graph
with these parameters arises from a primitive action of the groupPSL(2, 17).
Wewill see how this graph canbe constructed, andhow it differs fromNO−

8 (2)
in many ways.

Keywords: Strongly regular graph; primitive group
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The geometry of certain error-correcting codes
Simeon Ball

Universitat Politecnica de Catalunya (Spain) — Department of
Mathematics

Abstract
In this talk I will consider various error-correcting codes, including linear,

additive and stabiliser codes. It is well known that if one considers the set
of columns of a generator matrix of a linear code, then one can consider this
set as a set of points in a finite projective space. The parameters of the code
then translate over to properties of the point set. In this talk I will consider
the geometry of various different types of codes and codes with certain nice
properties, likeHermitian self-orthogonality. Most of the results I will mention
are contained in the articles [1], [2], [3] and [1].

Keywords: Error-correcting codes, finite geometry

References
[1] S. Ball, R. Vilar “The geometry of Hermitian self-orthogonal codes”, J. Geom, 113, Article 7, 2022.

[2] S. Ball, G. Gamboa and M. Lavrauw “On additive MDS codes over small fields”, Adv. Math.
Commun., to appear.

[3] S. Ball, R. Vilar “Determining when a truncated generalised Reed-Solomon code is Hermitian self-
orthogonal”, IEEE Transactions on Information Theory, to appear.

[4] S. Ball, P. Puig “The geometry of non-additive stabiliser codes”, preprint.
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On graphs whose spectral radius
does not exceed 3/

√
2

Francesco Belardo
Università degli Studi di Napoli Federico II (Italy) — Department of

Mathematics and Application “R. Caccioppoli”

Abstract
The identification of (connected) graphs with “small” spectral radius of the

adjacency matrix has been a quite investigated topic in Spectral Graph Theory.
So far, the graphs whose spectral radius does not exceed

√
2 +

√
5 are known.

The next reasonable step is to look for those having the spectral radius between√
2 +

√
5 and 3/

√
2. The authors of [2] proved that the structure is fairly

simple: the vertices of maximum degree 3 appear exclusively either on a path
or on a cycle, and such structure resembles the quipus. Here, we focus on the
(so far) last characterization obtained for the analogous problem with respect
to the signless Laplacian matrix and discuss its consequence on the adjacency
case. The research has been conducted jointly with Maurizio Brunetti, Vilmar
Trevisan and Jianfeng Wang.

Keywords: Graph Index, Graph Eigenvalues, Quipus

References
[1] F. Belardo, M. Brunetti, V. Trevisan, J.F. Wang. “On Quipus whose signless Laplacian index does not

exceed 4.5”, Journal of Algebraic Combinatorics, in press, 2022.

[2] R. Woo, A. Neumaier. “On graphs whose spectral radius is bounded by 3
2

√
2”, Graphs and Com-

binatorics, 23(6):713–726, 2007.
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On the number of rational points of curves over a
surface in P3

Elena Berardini
Technical University Eindhoven (The Netherlands)

Joint work with: Jade Nardi

Abstract
In this talk, wewill show that thenumber of rational points of an irreducible

curve of degreeδ definedover a finite fieldFq lying on a surfaceS inP3 of degree
d is, under certain conditions, bounded by δ(d+ q − 1)/2. Within a certain
range of δ and q, this result improves all other known bounds in the context
of space curves. The method we used is inspired by techniques developed by
Stöhr and Voloch [2]. In their seminal work of 1986, they introduced the
Frobenius orders of a projective curve and used them to give an upper bound
on the number of rational points of the curve. After recalling some general
results on the theory of orders of a space curve, we will study the arithmetic
properties of curves lying on a surface in P3, to finally prove the bound.

The talk is based on the preprint [1].

Keywords: algebraic curves, embedded surfaces, rational points, finite fields

References
[1] Elena Berardini and Jade Nardi. “Curves on Frobenius classical surfaces inP3 over finite fields”, arXiv

preprint arXiv:2111.09578, 2021.

[2] Karl-Otto Stöhr and José Felipe Voloch. “Weierstrass Points and Curves Over Finite Fields”, Pro-
ceedings of The London Mathematical Society,1, 1–19,1986.
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Theminimum degree of minimal Ramsey graphs for
cliques

Anurag Bishnoi
TU Delft (Netherlands) — Department of Mathematics

Joint work with: John Bamberg and Thomas Lesgourgues

Abstract
We will present a new upper bound of sr(Kk) = O(k5r5/2) on the

Ramsey parameter sr(Kk) introduced by Burr, Erdős and Lovász in 1976,
which is defined as the smallest minimum degree of a graphG such that any r-
colouring of the edges ofG contains a monochromaticKk, whereas no proper
subgraph ofG has this property. This improves the previous upper bound of
sr(Kk) = O(k6r3) proved by Fox et al. The construction used in our proof
relies on a group theoretic model of generalised quadrangles introduced by
Kantor in 1980.

Keywords: Ramsey graphs; Generalized quadrangles; Heisenberg groups; Packings

References
[1] John Bamberg, Anurag Bishnoi, Thomas Lesgourgues. “The minimum degree of minimal Ramsey

graphs for cliques”, to appear in Bulletins of LMS, 2022+.
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Edge balanced star-hypergraph designs and vertex
colorings of path designs

Paola Bonacini
University of Catania (Italy) — Department of Mathematics and Computer

Science
Joint work with: Lucia Marino

Abstract
Let K(3)

v = (X, E) be the complete hypergraph, uniform of rank 3,
defined on a vertex setX = {x1, . . . , xv}, so that E is the set of all triples
of X . Let H (3) = (V,D) be a subhypergraph of K(3)

v , which means that
V ⊆ X andD ⊆ E . We call 3-edges the triples of V contained in the family
D and edges the pairs of V contained in the 3-edges ofD, that we denote by
[x, y]. AH (3)-designΣ is called edge balanced if for any x, y ∈ X , x 6= y,
the number of blocks ofΣ containing the edge [x, y] is constant. We consider
the star hypergraph S(3)(2,m+ 2), which is a hypergraph withm 3-edges
such that all of them have an edge in common. We completely determined the
spectrum of edge balanced S(3)(2,m + 2)-designs for anym ≥ 2, that is
the set of orders v for which such a design exists. Then we consider the case
m = 2 andwe denote the hypergraphS(3)(2, 4) byP (3)(2, 4). Starting from
any edge-balanced S(3)(2, v+4

3
), with v ≡ 2 mod 3 sufficiently big, for any

p ∈ N, dv
2
e ≤ p ≤ v, we construct a P (3)(2, 4)-design of order 2v with

feasible set {2, 3} ∪ [p, v], in the context of proper vertex colorings such that
no block is either monochromatic or polychromatic.

Keywords: design, edge balanced, hypergraph, vertex coloring

References
[1] Paola Bonacini, Lucia Marino. “Edge balanced star‐hypergraph designs and vertex colorings of path

designs”, Journal of Combinatorial Designs, 1-18, 2022, https://doi.org/10.1002/
jcd.21837.
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Saturating systems in the rank metric
Matteo Bonini

Aalborg University (Denmark) — Deparment of Mathematical Sciences

Joint work with: Martino Borello, Eimear Byrne

Abstract
A set S ⊆ PG(k − 1, q) is called ρ-saturating if for any point Q ∈

PG(k − 1, q) there exist ρ + 1 points P1, . . . , Pρ+1 ∈ S such that Q ∈
〈P1, . . . , Pρ+1〉 and ρ is the smallest value with this property.

Recall that the covering radius of an [n, n− k]q code is the least integer ρ
such that the space Fn

q is covered by spheres of radius ρ centered on codewords.
It is well-known that a linear [n, n− k]q code endowed with the Hamming
metric has covering radius ρ if every element of Fk

q is a linear combination of ρ
columns of a generator matrix of the dual code (that is the orthogonal space
with respect to the standard inner product), and ρ is the smallest value with
such a property. The correspondence between projective systems and linear
codes w.rt. the Hamming metric specializes to a correspondence between
(ρ− 1)-saturating sets of size n in PG(k − 1, q) and the dual of [n, n− k]q
codes of covering radius ρ.

In this talk, we will discuss a generalization of saturating sets, called sat-
urating systems, that extend this correspondence to rank-metric codes. We
will analyse the properties of such geometrical objects and give some explicit
constructions.

Keywords: Rank-metric codes, covering radius, linear systems
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Small strong blocking sets by concatenation
Martino Borello

Université Paris 8 (France) — LAGA

Joint work with: Daniele Bartoli

Abstract
Strong blocking sets and their counterparts, minimal codes, attracted lots

of attention in the last years. Combining the concatenating construction of
codes with a geometric insight into the minimality condition, we explicitly
provide infinite families of small strong blocking sets, whose size is linear in
the dimension of the ambient projective spaces.

In this talk, we will first introduce the objects and their connections and
secondly we will present the constructions.

Keywords: Strong blocking sets; minimal codes; concatenation.

References
[1] D. Bartoli, M. Borello. “Small strong blocking sets by concatenation”, arXiv:2109.00584, 2021.
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Minimal blocking sets in small Desarguesian
projective planes

Arne Botteldoorn
Ghent University (Belgium) — Dept. Applied Math., Computer Sc. and Stat.

Joint work with: prof. Kris Coolsaet and prof. Veerle Fack

Abstract
All minimal blocking sets (up to equivalence) in Desarguesian projective

planes of order≤ 9were generated by computer. These blocking sets were then
classified according to size of the set, and order of the projective automorph-
ism group and collineation group. Explicit descriptions or constructions are
given for some sets, in particular (but not exclusively) for those blocking sets
with a fairly large automorphism group. Some of these constructions can be
generalised to Desarguesian projective planes of higher order.
We have found PG(2, 7) to have 1433 inequivalent minimal blocking sets;
PG(2, 8) has over 45 thousand and PG(2, 9) has over 15 million minimal
blocking sets (inequivalent under PL(3, 8) and PL(3, 9), respectively). We
have been able to describe several of these sets as unions of orbits of powers of
Singer cycles. Other minimal blocking sets are related to orbits of Sym(4) and
Sym(5), sum-free sets, the Hessian configuration, algebraic curves and unions
of Fano subplanes.

Keywords: Blocking Sets; Desarguesian Projective Planes
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Toward a solution of the Hoffmann Program
for signed graphs

Maurizio Brunetti
Università di Napoli ‘Federico II’ (Italy) — Dipartimento di matematica e

Applicazioni
Joint work with: Francesco Belardo

Abstract
Let G be a simple graph, and let M(G) be any complex-valued matrix

associated to G in a prescribed way. The M -spectral radius ρM(G) of G is
the largest norm of itsM -eigenvalues. A real number γ(M) is said to be an
M -limit point if there exists a sequence of graphs {Gk | k ∈ N} such that
ρ
M
(Gi) 6= ρ

M
(Gj) whenever i 6= j and limk→∞ ρ

M
(Gk) = γ(M).One of

the two sides of theHoffman programwith respect toM consists in determining
all the possible values for theM -limit points. We investigate and solve this part
of the Hoffman program forM being the adjacency matrix of signed graphs,
i.e. graphs whose edges have a positive or a negative sign.

Keywords: Signed graphs, Hoffman limit points, spectral radius.

References
[1] Francesco Belardo, S. Cioabă, J. Koolen, J.F. Wang. “Open problems in the spectral theory of signed
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[2] A. J.Hoffman. “On limit points of spectral radii of non-negative symmetric integralmatrices”, Lecture
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A Spot for Strong Difference Families
Marco Buratti

University of Perugia

Abstract
A design with an automorphism group (G,+) acting sharply transitively

on the points is said to beG-regular. So, up to isomorphism, its point set is
G and any translateB + g of any blockB is a block as well. Sometimes the
construction of a (G×H)-regular 2-design withH the additive group of a
suitable ring can be greatly facilitated by cleverly choosing the projections of
its blocks onG in advance. This is the idea hidden in the notion of a strong
difference family (SDF) implicitly used by many authors for more than one
century (see, e.g., [2]) but formally introduced for the first time in [1]. Since
then, SDFs have been successful in the construction of many new infinite series
of designs (see, e.g., [1, 3]) which cannot be surveyed in a short talk. I will
settle for advertising SDFs by selecting one of my most recent results achieved
with their use.

Keywords: 2-design; automorphism group; difference family.

References
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Maximal Unrefinable Partitions into Distinct Parts
Lorenzo Campioni

University of L’Aquila (Italy) — DISIM

Joint work with: Riccardo Aragona, Roberto Civino, Massimo Lauria

Abstract
Apartition into distinct parts is refinable if one of its partsa can be replaced

by two different integers which do not belong to the partition andwhose sum is
a, otherwise is unrefinable. For example, the partition (1, 2, 5, 7) is refinable
because we can write 7 as 3 + 4, while the partition (1, 2, 3, 6, 7, 11) is
unrefinable.
Clearly, unrefinability is a non-trivial limitation on the distribution of the parts.
For this reason, we decided to focus on the size of the largest element, for which
we found an upper bound, and on the number of partitions which reach the
bound, that we call maximal.
We start our study with the easier problem of counting maximal unrefinable
partitions of the triangular number Tn =

n(n+1)

2
. We prove that, if n is even,

then there exists only one maximal unrefinable partition of Tn, while if n is
odd we show a one-to-one correspondence between the maximal unrefinable
partitions of Tn and the partitions in distinct parts of k, where n = 2k − 1.
If time permits, I will present a generalization of the framework introduced
to study the case of Tn to the case of any integer. Also in this case we obtain a
complete classification of maximal unrefinable partitions and we show, again,
that this is related to suitable partitions into distinct parts.

Keywords: Unrefinable Partition, Partition into Distinct Parts, Triangular numbers, bijective proof

References
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Combinatorial identities of the Rogers-Ramanujan
type

Stefano Capparelli
University of Rome (Italy) — Department SBAI

Joint work with: A. Meurman, M. Primc

Abstract
We conjecture combinatorial Rogers-Ramanujan type colored partition

identities related to standard representations of the affine Lie algebra of type
C

(1)
` , ` ≥ 2, and we conjecture similar colored partition identities with no

obvious connection to representation theory of affine Lie algebras.

Keywords: Integer partitions; Affine Lie algebras;

References
[1] S. Capparelli, A. Meurman, M. Primc. “New Combinatorial identities of the Rogers-Ramanujn type”,
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Frustration-critical signed graphs
Chiara Cappello

University of Paderborn (Germany) — Department of Mathematics

Joint work with: Eckhard Steffen

Abstract
A signed graph (G,Σ) is a graph G together with a set Σ ⊆ E(G) of

negative edges. A circuit is positive if the product of the signs of its edges is
positive. A signed graph (G,Σ) is balanced if all its circuits are positive. The
frustration index l(G,Σ) is the minimum cardinality of a set E ⊆ E(G)
such that (G − E,Σ − E) is balanced [2, 3]. A signed graph (G,Σ) is
k-critical if l(G,Σ) = k and l(G− e,Σ− e) < k, for every e ∈ E(G).

We present decomposition and subdivision of critical signed graphs and
completely determine the set of t-critical signed graphs, for t ≤ 2. Critical
signed graphs are characterized. We then focus on non-decomposable critical
signed graphs. In particular, we characterize the setS∗ of non-decomposable k-
critical signed graphs not containing a decomposable t-critical signed subgraph
for every t ≤ k. We show that S∗ consists of cyclically 4-edge-connected,
projective-planar cubic graphs. Furthermore, we construct k-critical signed
graphs of S∗ for every k ≥ 1 [1].

Keywords: Signed graphs; frustration index; criticality.
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A spectral theory for gain graphs
Matteo Cavaleri

Università degli Studi Niccolò Cusano (Italy) — Department of
engineering

Joint work with: D. D’Angeli, A. Donno

Abstract
Gain graphs are graphs whose oriented edges are labeled with elements of a

group, in such a way that to opposite orientations correspond inverse elements.
They are a generalization of signed graphs, which are graphs whose edges can
be positive or negative. The spectral theory of graphs has a very natural general-
ization to signed graphs since Hermitian matrices are naturally associated with
a signed graph. A seminal result is a characterization of balanced signed graphs
(graphs where the product of the signs of the edges along any cycle is positive)
in terms of their spectra.

The balance has an natural generalization to general gain graphs, while
the spectral theory of gain graphs has been well studied only for special groups,
since matrices that come out with a gain graph on an abstract groupG are not
complex, but group algebra valued matrices. Our approach is to use a unitary
representation π of the group of gains in order to obtain a Hermitian matrix
and therefore a real spectrum of the gain graph.

In this talk I will show how this method actually recover many special
cases and how it can be used to generalize results from the classic case (e.g., the
aforementioned balance result). Moreover, I will discuss how the choice of
representation can affect the spectrum and the notion of cospectrality.

Keywords: Spectral graph theory; gain graphs; signed graphs; adjacency matrix; balance
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An algorithmic method to compute plat-like Markov
moves for genus two 3-manifolds

Paolo Cavicchioli
Università degli studi di Modena e Reggio Emilia (Italy) — FIM Department

Abstract
The talk deals with equivalence of links in 3-manifolds of Heegaard genus

2. Starting from a description of such a manifold introduced in [1], that uses
6-tuples of integers and determines aHeegaard decomposition of themanifold,
we construct an algorithm (implemented in c++) which allows to find the
words in B2,2n, the braid group on 2n strands of a surface of genus 2, that
realizes the plat-equivalence for links in that manifold. In this way we extend
to the case of genus 2 the result obtained in [2] for genus 1 manifolds. We
describe in particular a case of this construction.

Keywords: Knots; 3-manifolds; equivalence; Heegaard diagrams; 6-tuples; algorithms
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Linear equations for the weight distribution of codes
over finite chain rings

Giulia Cavicchioni
University of Trento (Italy) — Department of Mathematics

Joint work with: Alessio Meneghetti

Abstract
Thedetermination of theweight distribution of a code is of both theoretical

and practical interest. A question naturally arising in the context of algebraic
codes is whether we can take advantage of the underlying algebraic structure to
obtain some information useful to the computation of the weight distribution.

In our work we focus on linear codes over finite chain rings. For such codes
we determine new linear equations for their weight distribution by counting
the number of some special submatrices of the parity-check matrix.
LetC be a linear code over a finite chain ring with minimum distance d and
let σ be the sum of the Singleton defects ofC andC⊥. Our formula shows
that the knowledge of σ + d − 1 elements of the weight distribution ofC
is enough to compute the full weight distribution of C and C⊥. Thus, one
can prove directly the weight distributions of some families of codes, such as
free MDS codes: in this case the knowledge of the length n and the minimum
distance d are sufficient to derive the full weight distribution of the code.

Keywords: Codes over rings; Weight distributions, Finite chain rings

References
[1] Guenda, Kenza and Gulliver, T.Aaron “MDS and self-dual codes over rings”, Finite Fields and

Their Applications, 18(6):1061–1075, 2012.

[2] Cavicchioni, Giulia and Meneghetti, Alessio. “Linear equations for the weight distribution of codes
over finite chain rings (draft)”.
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Near–MDS codes and caps
Michela Ceria

Politecnico di Bari (Italy) — Dipartimento di Meccanica, Matematica e
Management

Joint work with: Antonio Cossidente, Giuseppe Marino and Francesco Pavese

Abstract
Let q be a power of a prime and PG(k − 1, q) the projective space of

dimension k− 1 overFq . We calln-cap a point set of sizen such that no three
of them are collinear; it is complete if it is not contained in any (n+ 1)-cap.
If we take the matrix whose columns are the representative of the points of
an n-cap, we get the parity-check matrix of a linear code over Fq. Moreover,
if n > k, complete n-caps of PG(k − 1, q) are essentially equivalent to
non-extendable linear [n, n− k, 4]q codes with covering radius ρ = 2.

For any [n, k, d]q linear code, the Singleton defect isD := n−k+1−d.
We call near-MDS a code such that both itself and its dual haveD = 1 and this
is equivalent to say that the columns of a generatormatrix form a set of points in
PG(k− 1, q), k ≥ 3 (called NMDS-set) with the following three properties:
every k − 1 points generate a hyperplane, there are k points belonging to the
same hyperplane and every k + 1 points generate the whole PG(k − 1, q).
An NMDS-set is complete if it is maximal with respect to inclusion.

In this talk, based on the paper [1], we will examine NMDS-sets of dimen-
sion 4 and caps in PG(4, q). In particular we will see: a class of NMDS-sets of
PG(3, q), q = 22h+1, h ≥ 1, obtained intersecting an elliptic quadric and a
Suzuki–Tits ovoid ofW (3, q) (size: q +

√
2q + 1), two classes of complete

caps of PG(4, q), derived by the previous result (size: 2q2 − q ±
√
2q + 2)

and the possible sizes of an NMDS-set containing a twisted cubic of PG(3, q).

Keywords: nearMDS codes; caps

References
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Achromatic Dominating Sets
Nancy E. Clarke

Acadia University (Canada) — Mathematics and Statistics

Joint work with: Ruth Haas

Abstract
Given a k-colouring of (the vertices of ) a graphG, a dominating setD of

G is said to be an achromatic (or rainbow) dominating set if every vertex ofD
has a different colour. Our parameter of interest is the achromatic dominating
number ρ(G), defined to be the minimum number of colours such that, for
any ρ(G)-colouring ofG, there exists an achromatic dominating set. In this
talk, we present a variety of results including exact values of our parameter
for several classes of graphs, as well as more general bounds. In particular, we
consider graphs of diameter 2 and lexicographic products.

Keywords: Graphs, dominating sets, achromatic, diameter, products
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Egalitarian Popularity Labellings for Steiner Systems
Charles J. Colbourn

Arizona State University (USA) — Computing and Augmented Intelligence

Joint work with: Dylan Lusi

Abstract
Steiner systems and their duals are widely used for data layout in distributed

storage systems. However, the specific assignment of data items to storage units
often ignores the long-term popularity of the items. In addressing popularity, a
general problem is:

Order the blocks of a design, computing the point sum of an element
as the sum of the indices of blocks containing that element. The point
difference sum is the difference between the largest and smallest point
sums. Find a block ordering that minimizes the point difference sum.

A block ordering is egalitarianwhen its point difference sum is zero. In this talk,
we explore bounds on the difference sums for Steiner systemsS(t, k, v) in gen-
eral. We outline a construction for egalitarian orderings of certain S(2, k, v)
designs that are resolvable and 1-rotational, and suggest methods to extend
this construction.

Keywords: egalitarian labelling; Steiner system; 1-rotational design
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On the number of non-isomorphic (simple) k-gonal
biembeddings of complete multipartite graphs

Simone Costa
University of Brescia (Italy) — Department DICATAM

Joint work with: Anita Pasotti

Abstract
In this talk we provide exponential lower bounds on the number of non-

isomorphic k-gonal biembeddings of the complete multipartite graph into
orientable surfaces. For this purpose, we use the concept, introduced by Arch-
deacon in 2015, of Heffer array and its relations with graph embeddings. In
particular we show that, under certain hypotheses, from a single Heffter array,
we can obtain an exponential number of distinct graph embeddings. Exploit-
ing this idea starting from the arrays constructed by Cavenagh, Donovan and
Yazıcı in 2020, we obtain that, for infinitely many values of k and v, there are

at least k
k
2+o(k) · 2v·

H(1/4)

(2k)2
+o(v) non-isomorphic k-gonal biembeddings ofKv ,

whereH(·) is the binary entropy function. Moreover about the embeddings

ofK v
t×t, for t ∈ {1, 2, k}, we provide a construction of 2v·

H(1/4)
2k(k−1)

+o(v,k) non-
isomorphic k-gonal biembeddings whenever k is odd and v belongs to a wide
infinite family of values.

References
[1] D.S. Archdeacon. “Heffter arrays and biembedding graphs on surfaces”, Electron. J. Combin., 22:

#P1.74, 2015.

[2] N.J. Cavenagh, D. Donovan, E.Ş. Yazıcı. “Biembeddings of cycle systems using integer Heffter arrays”,
J. Combin. Des., 28: 900–922, 2020.

[3] S. Costa, A. Pasotti. “On the number of non-isomorphic (simple) k-gonal biembeddings of complete
multipartite graphs”, Submitted, arXiv:2111.08323v2.
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FromKirby diagrams to edge-colored graphs
representing PL 4-manifolds

Paola Cristofori
University of Modena and Reggio Emilia (Italy) — Department of Physics,

Informatics and Mathematics
Joint work with: Maria Rita Casali

Abstract
Regular edge-colored graphs have proved to be, in many ways, an useful

combinatorial tool to encode triangulations and thus represent compact PL
manifolds of any dimension.

On the other hand, in dimension 4, a classical representation method for
compact PL manifolds is given by Kirby diagrams, a Kirby diagram being a link
L in the 3-sphere equipped with a vector d of integers associated to some of its
components.

We present an algorithm which, given a Kirby diagram (L, d) of a com-
pact PL 4-manifoldM 4(L, d), produces an edge-colored graph representing
M 4(L, d) and directly “drawn” over a planar diagram ofL. Furthermore, the
combinatorial structure of the resulting graph allows to obtain upper bounds
for the value of some graph-defined invariants ofM 4(L, d).

If, in particular, we apply ourmethod toKirbydiagramsof exotic 4-manifolds,
it can provide us with a large number of examples of explicit triangulations of
such manifolds, which can be otherwise rarely found in literature.

Finally, in caseM 4(L, d) has empty or connected boundary, we show how
the graphs produced by the algorithm induce a particular kind of decompos-
itions of the manifold, called trisections, which were introduced by Gay and
Kirby in 2016 and are still intensively studied.

Keywords: Kirby diagram; PL 4-manifold; edge-colored graph; trisection
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Partial difference sets in nonabelian groups
James A Davis

University of Richmond (USA) — Department of Mathematics

Joint work with: Andrew Brady

Abstract
Partial difference sets (PDSs) in nonabelian groups are relatively rare. In

this talk, we describe how recent computer searches for PDSs in groups of
order 64 have revealed that linking systems of difference sets can be used to
construct PDSs in many nonabelian groups. We indicate how this can be used
to construct nonabelian PDSs in larger groups.

Keywords: Partial difference sets, Linking systems

64



Jan
De Beule13

8
5

3
2

21st
1 1 Combinatorics 2022

Mantova, Italy, 30 May – 3 June 2022

M
SC

(2
01

0)
:0

5B
25

,0
5E

30
,5

1E
20

,5
1E

24
M
SC

(2
01

0)
:0

5B
25

,0
5E

30
,5

1E
20

,5
1E

24

An Erdős-Ko-Rado problem on flags of finite
spherical buildings

Jan De Beule
Vrije Universiteit Brussel (Belgium) — Department of Mathematics and

Data Science
Joint work with: Sam Mattheus and Klaus Metsch

Abstract
The following theorem is one of the earliest Erdős-Ko-Rado (EKR) the-

orems in finite geometry, see e.g. [2]. Let n ∈ N and n ≥ 2k. Let F be
a family of k-dimensional subspaces of V (n, q), pairwise intersecting non-
trivially. Then |F| ≤

(
n−1

k−1

)
q
. In case of equality and n > 2k,F is the set of

k-dimensional subspaces that contain a fixed 1-dimensional subspace.
In this talk we will discuss an EKR problem on flags in finite spherical

buildings. To state the EKR problem, “non-intersection of subspaces” will be
replaced by “opposite flags”. Hencewe are looking for a set of flagsmutually non-
opposite, i.e. a coclique in the oppositeness graph. We explain how the upper
bound is found by applyingHoffman’s ratio bound (also known as theDelsarte-
Hoffman coclique bound). This requires the application of an algorithm found
in [1], and it will be explained how it can be applied in classical geometries
such as finite projective spaces and finite classical polar spaces. Also attention
will be given to remaining open problems and ongoing work.

Keywords: Association scheme, Erdős-Ko-Rado problem, flags of finite projective spaces

References
[1] A. E. Brouwer. “eigenvalues of oppositeness graphs in buildings of spherical type.” InCombinatorics
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spherical buildings”. https://arxiv.org/abs/2007.01104.

[3] W. N. Hsieh. “Families of intersecting finite vector spaces.” J. Combinatorial Theory Ser. A,
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65



Maarten
De Boeck13

8
5

3
2

21st
1 1 Combinatorics 2022

Mantova, Italy, 30 May – 3 June 2022

M
SC

(2
01

0)
:5

1E
20

M
SC

(2
01

0)
:5

1E
20

Theweight distributions of linear sets in PG(1, q5)
Maarten De Boeck

University of Rijeka (Croatia) — Faculty of Mathematics

Joint work with: Geertrui Van de Voorde

Abstract
A setS is said to be anFq-linear set of rank k in PG(r−1, qt) = PG(W )

if S = LU , with

LU = {〈v〉qt | v ∈ U \ {0}} ,

whereU is a k-dimensionalFq-vector subspace ofW = Fr
qt and 〈v〉qt denotes

the projective point determined by the vector v. Linear sets are central objects
in modern day projective geometry, with applications in coding theory, algebra
and projective geometry itself.

For a pointP inLU , the t-dimensional Fq-vector space definingP inter-
sects U in an i-dimensional Fq-vector space for some i > 0. The integer i
is called the weight of the pointP (see [3]). This allows to define the weight
distribution of a linear set. For linear sets of rank 1, 2 and 3, there are 1, 2 and
3 admissible weight distributions, respectively. The admissible weight distribu-
tions of linear sets of rank 4 were described in [2]. In this talk, based on [1],
we will discuss the possible weight distributions of Fq-linear sets of PG(1, q5).

Keywords: Linear set; weight distribution; club
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64 pp., 2020.
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On Sequences in Cyclic Groups with Distinct Partial
Sums

Stefano Della Fiore
University of Brescia (Italy) — Department of Information Engineering

Joint work with: S. Costa, M. A. Ollis and S. Rovner–Frydman

Abstract
Let S be a subset ofZn \ {0} of size k. Letx = (x1, x2, . . . , xk) be an

ordering of the elements ofS and define its partial sumsy = (y0, y1, . . . , yk)
by y0 = 0 and yi = x1 + · · · + xi for i > 0. Alspach [1] conjectures
that every subset S whose sum is nonzero has an ordering with distinct partial
sums. The successful/partial resolution of this conjecture has implications
in the study of graph decompositions and embeddings and in the construc-
tion of non-zero sum Heffter arrays. Inspired by previous works (see [3]), we
translate the problem into one of finding monomials with non-zero coeffi-
cients in particular polynomials overZp, where p is a prime divisor of n, using
Alon’s Combinatorial Nullstellensatz. The approach can be used in conjunc-
tion with a computational approach in cases where n = pt with p prime
and t and k small. In [2] we proved the conjecture for k = 10, 11 and
t = 2, 3, 4, 5 and for k = 12 and t = 1, 2, 3, 4, and in addition when
S ⊆ Zm×H \{0Zm×H} and k ≤ 12, wherem has all prime factors greater
than k!/2 andH ∈ {{0},Z2,Z3,Z4}.

Keywords: Alspach’s Conjecture, partial sums, polynomial method

References
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[3] J. Hicks, M. A. Ollis and J. R. Schmitt, Distinct partial sums in cyclic groups: polynomial method and constructive
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Higgledy-piggledy sets in projective spaces
Lins Denaux

Ghent University (Belgium) — Department of Mathematics WE16

Abstract
In this talk, we focus on higgledy-piggledy sets of k-subspaces in PG(N, q), i.e.
sets of projective subspaces that are ‘well-spread-out’. More precisely, the set
of intersection points of these k-subspaces with any (N − k)-subspace κ of
PG(N, q) spans κ itself. In other words, the set of points in the union of these
k-subspaces forms a strong blocking set w.r.t. (N − k)-subspaces. Naturally,
one would like to find a higgledy-piggledy set consisting of a small number of
k-subspaces.

Although these combinatorial sets of subspaces are sporadically mentioned
in older works, only since 2014 researchers have started to investigate these
sets as a main point of interest. This talk aims to give its audience an overview
of known results concerning higgledy-piggledy sets (lower bounds, existence
results, construction methods...) and their applications to coding and graph
theory, as well as share some new results and interesting open problems.

Keywords: Cutting blocking sets; Higgledy-piggledy sets; Minimal codes; Projective spaces; Strong
blocking sets

References
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The Segre variety S2,2(K) in a geometry of type
E6,1(K)

Anneleen De Schepper
University of Ghent (Belgium) — Department of mathematics: Algebra and

Geometry

Abstract
TheSege varietyS2,2(K), ormore abstractly even any direct product of two

projective planes overK, fully embeds in four different ways in an exceptional
geometry of type E6,1(K). I will give some properties of both geometries, and
focus on their full embeddings in each other. The motivation for this lies in
the full embedding of the long root geometry E6,2(K) in E8,8(K). With our
results, we can prove that there is, up to projectivity, a unique such embedding,
arising in a beautiful geometric way.

Keywords: Exceptional geometries, Segre variety, embeddings
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New examples of Cameron-Liebler sets in hyperbolic
quadrics

Jozefien D’haeseleer
Ghent University (Belgium)

Joint work with: M. De Boeck and M. Rodgers

Abstract
In 1982, Cameron and Liebler introduced specific line classes in PG(3, q)

when investigating the orbits of the subgroups of the collineation group of
PG(3, q). They found that these Cameron-Liebler sets can be defined in many
equivalent ways; some combinatorial, geometrical or algebraic in nature.

A Cameron-Liebler line setL in PG(3, q) is a set of lines, such that every
line spread in PG(3, q) has the same number of lines in common withL.

The examination of these Cameron-Liebler line sets in PG(3, q) started
the motivation for defining and investigating Cameron-Liebler sets in other
contexts, including the context of finite classical polar spaces [1, 2].

In this talk I will focus on Cameron-Liebler sets in these finite classical
polar spaces. I will present some non-trivial examples of Cameron-Liebler sets
of generators in hyperbolic quadrics, which were recently found by M. De
Boeck, M. Rodgers and myself.

Keywords: Cameron-Liebler set, Polar spaces, Hyperbolic quadrics
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Intersecting theorems for finite general linear groups
Alena Ernst

Paderborn University (Germany) — Department of Mathematics

Joint work with: Kai-Uwe Schmidt

Abstract
A subset Y of the symmetric group Sn is t-intersecting if x−1y fixes t

elements in [n] for all x, y ∈ Y . Deza and Frankl conjectured [1] and Ellis,
Friedgut, and Pilpel proved [2] that the size of a t-intersecting set in Sn is at
most (n− t)! for n sufficiently large compared to t. Moreover equality holds
if and only if Y is a coset of the stabiliser of a t-tuple.

In this talk we discuss a q-analog of this result. We define a subset Y of
GL(n, q) to be t-intersecting if x−1y fixes a t-dimensional subspace of Fn

q

pointwise for all x, y ∈ Y . It is shown that the size of a t-intersecting subset
ofGL(n, q) is at most

[n− t]q!
(q − 1)nq

(n
2

)
(q − 1)tq

(t
2

) = (qn − qt)(qn − qt+1) · · · (qn − qn−1)

for n sufficiently large compared to t. Moreover we give a characterisation of
the cases for which equality holds.

Keywords: Association scheme, Erdős-Ko-Rado, intersecting, finite general linear groups
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Permutations of zero-sum k-sets
Giovanni Falcone

University of Palermo (Italy) — Department of Mathematics and
Computer Science

Joint work with: Marco Pavone

Abstract
We consider the natural partition of the family of all k-subsets of a a vector

space P over a Galois field GF(p), respectively P ∗ = P \ {0},} as the
disjoint union, of the families of all k-sets of elements adding up to zero inP ,
respectively inP ∗.

A natural question to ask is: what are the permutations ofP (respectively
of P ∗) that, for a given k, induce permutations of the family of all k-sets of
elements adding up to 0? We prove that the only such permutations of P
are the invertible linear mappings, if p does not divide k, and the invertible
affinities of the affine spaceP overGF(p), if p divides k. Also, we prove that
the only such permutations ofP ∗ are the invertible linear mappings ofP over
GF(p) [1]. When the familyB0

k of zero-sum k-sets represents the blocks of a
2-designD = (P,B0

k), the permutations ofP that induce permutations of
B0

k form precisely the automorphism group of the block designD. The same
questions may be asked forD∗ = (P ∗, B0,∗

k ).
Connections to Hamming codes will be outlined [2].

Keywords: Zero-sum sets; Additive designs.

References
[1] Falcone, G., Pavone, M. “Permutations of zero-sumsets in a finite vector space”, Forum Mathem-

aticum, 33 (2) 2021.

[2] Falcone, G., Pavone, M. “Binary Hamming codes and Boolean designs”, Designs Codes and
Cryptography, 89 (6) 2021.
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Homology of directed graphs
with application to DNA recombination

Margherita Maria Ferrari
University of South Florida (US) — Department of Mathematics and

Statistics
Joint work with: Lina Fajardo Gómez, Nataša Jonoska, Masahico Saito

Abstract
A double occurrence word (DOW) is a word in which every symbol ap-

pears exactly twice. We consider subwords which occur twice (repeat word) or
which occur once along with their reverse (return word). Such subwords gen-
eralize square and palindromic factors of DOWs, respectively. In the context
of genomics, deletions of repeat and return words on DOWs have been used
to study DNA recombination in certain species of ciliates [1]. We model these
processes with directed graphs where vertices are DOWs, and an edge fromw
tow′ exists ifw′ is obtained fromw through a repeat/return word deletion.
On a directed graph, we consider the cell complex consisting of products of
directed simplices and then compute homology groups, which can be used to
describe the complexity of these recombination processes.

Keywords: Directed graph, homology, DNA recombination.

References
[1] J. Burns, D. Kukushkin, X. Chen, L. Landweber, M. Saito, N. Jonoska. “Recurring Patterns Among

Scrambled Genes in the Encrypted Genome of the Ciliate Oxytricha trifallax”, Journal of Theor-
etical Biology, 410 171–180, (2016).
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Γ-supermagic labelings ofCm�Cn
Dalibor Froncek

University of Minnesota Duluth (USA) — Department of Mathematics and
Statistics

Joint work with: P. Paananen and L. Sorensen

Abstract
There is a close connection betweenAbelian groups andCartesian products

of cycles, since every Cartesian productCn1
�Cn2

� · · ·�Cnt can be viewed
as the Cayley graph of the groupZn1

⊕ Zn2
⊕ · · · ⊕ Znt with generating set

S = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}.
A graphG = (V,E) is Γ-supermagic if there exists a bijection f fromE

to a group Γ of order |E| (called a Γ-supermagic labeling) such that the weight
w(x) of each vertex x, defined as the sum of labels of all edges incident with
x, is equal to the same magic element µ. That is, there exists µ ∈ Γ such that
for all x ∈ V ,

w(x) =
∑
xy∈E

f(xy) = µ.

It was proved by DF, McKeown, McKeown, and McKeown ([1], [2]) that
a Z2mn-supermagic labeling of Cm�Cn exists for all m,n ≥ 3. We prove
that whenm ≡ n (mod 2), thenCm�Cn allows aΓ-supermagic labeling by
any Abelian group Γ of order 2mn. We also present some preliminary results
on labelings ofCm�Cn by non-Abelian groups, namely dihedral groupsDmn.

Keywords: Γ-supermagic labeling, Γ-supermagic graph, vertex-magic edge Γ-labeling

References
[1] D. Froncek, J. McKeown, J. McKeown, M. McKeown. “Z2nm-supermagic labeling of Cn�Cm”,

Indones. J. Combin., 2(2) 57–71, 2018.

[2] D. Froncek, M. McKeown, “Note on diagonal construction of Z2nm-supermagic labeling of Cn�Cm”,
AKCE Int. J. Graphs Comb., 17(3) 952–954, 2020.
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Steiner loops of affine and projective type
Mario Galici

University of Palermo (Italy) — Department of Mathematics and
Computer science

Joint work with: Giovanni Falcone, Ágota Figula

Abstract
In this talk I will distinguish Steiner loops of affine and of projective type,

showing common features and differences between them. After some defini-
tions and basic properties, I will focus on the correspondence between normal
subloops and quotient loops, and Steiner subsystems and induced Steiner quo-
tient systems, respectively. Indeed, ifLS is a Steiner loop of affine/projective
type corresponding to a STS S , there is a bijection between the subloops of
LS and the subsystems of S (containing the identity element for the affine
case). If LS has a normal subloop LN , any coset modulo LN corresponds
to a STS (containingN for the projective case), and also the quotient loop
LS/LN is a Steiner loop of affine/projective type. I will report some new
results about projective Steiner loops that are extension of a normal subloop
LN by a quotient loopLQ, comparing this construction with the affine case.

Keywords: Steiner triple systems; loops.

References
[1] G. Falcone, Á. Figula, C. Hannusch. “Steiner loops of affine type”, Results in Math., 75(4), 2020.

[2] K. Strambach, I. Stuhl. “Translation groups of Steiner loops”, Discrete Mathematics, 309:
4225–4227, 2009.

[3] D. Král’, E. Máčajová, A. Pór, J. Sereni. “Characterisation Results for Steiner Triple Systems and Their
Application to Edge-Colourings of Cubic Graphs”, Canadian Journal of Mathematics, 62(2):
355-381, 2010
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Weil polynomials of abelian varieties over finite fields
with many rational points
Alejandro J. Giangreco Maidana

Université Polytechnique Hauts-de-France (France) — CERAMATHS

Joint work with: Elena Berardini

Abstract
In this work we present a connection between abelian varieties over finite

fields with many rational points, their group structure, and algebraic integers
with minimal trace. This allow us to have some information about the Weil
polynomial of these varieties, and to show that their group of rational points
are cyclic outside a explicitly given set of primes. This talk is based on a recently
published paper [1].

Keywords: Abelian varieties over finite fields; Weil polynomials; groups of rational points; cyclic
groups

References
[1] Elena Berardini, Alejandro J. Giangreco-Maidana. “Weil polynomials of abelian varieties over finite

fields with many rational points”, International Journal of Number Theory, 0(0):1–13,
2022.
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Graphs with few hamiltonian cycles
Jan Goedgebeur

KU Leuven (Belgium) — Department of Computer Science

Joint work with: Barbara Meersman and Carol T. Zamfirescu

Abstract
We will present an algorithm for the exhaustive generation of all non-

isomorphic graphs with a given number k ≥ 0 of hamiltonian cycles, which
is especially efficient for small values of k. Our main findings, combining
applications of this algorithm and existing algorithms with new theoretical
results, revolve around graphs containing exactly one hamiltonian cycle – i.e.
uniquely hamiltonian (UH) graphs – or exactly three hamiltonian cycles.

Motivated by a classic result of Smith and recent work of Royle, we show
that there exist nearly cubic UH graphs of order n iff n ≥ 18 is even. This
gives the strongest form of a theorem of Entringer and Swart, and sheds light
on a question of Fleischner originally settled by Seamone.

We prove equivalent formulations of the conjecture of Bondy and Jackson
that every planar UH graph contains two vertices of degree 2, verify it up to
order 16, and show that its toric analogue does not hold.

Furthermore, we verify the conjecture of Sheehan that there is no 4-regular
UH graph up to order 21 and answer a question of Chia andThomassen on the
number of longest cycles in cyclically 4-edge-connected planar cubic graphs.

Keywords: Hamiltonian cycle; uniquely hamiltonian; Bondy-Jackson conjecture; cubic graph;
exhaustive generation
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Absolute points of correlations of PG(5, qn)
Giovanni G. Grimaldi

University of Naples Federico II (Italy) — Department of Maths. and Appls.

Joint work with: Nicola Durante

Abstract
The sets of the absolute points of (possibly degenerate) polarities of a

projective space are well known. The sets of the absolute points of (possibly
degenerate) correlations, different from polarities, of PG(2, qn) have been
completely determined by B.C. Kestenband in 11 papers from 1990 to 2014,
for non-degenerate correlations and by J. D’haeseleer and N. Durante in [3]
for degenerate correlations. The sets of the absolute points of degenerate cor-
relations, different from degenerate polarities, of PG(3, qn) and PG(4, qn)
have been determined respectively in [2] and [1]. In this talk, we consider the
five dimensional case and determine the sets of the absolute points of degen-
erate correlations, different from degenerate polarities, of a projective space
PG(5, qn). As an application we show that some of these sets are related to
some ovoids of PG(5, qn).

Keywords: Sesquilinear forms, correlations.

References
[1] J. D’haeseleer, N.Durante. “On absolute points of correlations inPG(2, qn)”, Electron. J. Combin.,

27(2):2–32, 2020.

[2] G. Donati, N. Durante. “Absolute points of correlations in PG(3, qn)”, J. Algebr. Comb.,
54:109–133, 2021.

[3] N. Durante, G.G. Grimaldi. “Absolute points of correlations in PG(4, qn)”, Submitted.
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Il mantovano Vittorio Martinetti (1859-1936) and
the future of configurations

Harald Gropp
Universität Heidelberg

Abstract
Vittorio Martinetti was born in Scorzalo near Mantova in 1859, at that

time still part of the Habsburg monarchy. Since the Combinatorics 2022 takes
place in Mantova, a short biography should be part of this talk. He worked
on configurations and introduced spatial configurations. After his stay with
the universities in Messina and Palermo he came back to the north of Italy and
died in Milano in 1936.

A second reason for this talk is that among the participants there are several
who contributed to the research on configurations in the last 30 years. These
are T. Pisanski, P. Östergård, V. Krčadinac, K. Stokes and our Polish colleagues.
I hope very much I did not forget anybody.

It may be useful to look back to the last 40 years of research on configura-
tions and to plan the future years.

In hypergraph language configurations are linear regular uniform hyper-
graphs. They were born in geometrical language in 1876 as a system of points
and lines such that every line contains k points, through every point there are
r lines, and through 2 different points there is at most one line.

At the end of the 19th centuryMartinetti introduced spatial configurations
where instead through 2 different points there are at most 2 lines. The focus
of this talk will probably be on these spatial or 2-configurations since there is
even more to investigate in the future.

So far a short abstract of this talk in Mantova, the northernmost town of
ancient Etrurian culture with a kakadu in a church.

Keywords: Configurations
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Minimal codes, strong blocking sets and
higgledy-piggledy lines

Tamás Héger
ELTE Eötvös Loránd University (Hungary) — ELKH-ELTE GAC

Joint work with: Zoltán Lóránt Nagy

Abstract
A codeword v of a linear code C is minimal if the support of v does not

contain the support of any codeword other than its scalar multiples. The linear
code C is a minimal code if all of its codewords are minimal.

Thegeometrical interpretaitonofminimal codes as point sets of a projective
space are called strong (or cutting) blocking sets. A point setB ofPG(n, q) is a
strong blocking set if for every hyperplaneH of PG(n, q),H ∩B generatesH ;
that is,H ∩B contains n points in general position. Note that in PG(2, q),
strong blocking sets are the same as double blocking sets.

A major problem regarding strong blocking sets is to find small examples.
Formerly known constructions were either large (quadratic in n or superlinear
in q) or required q to be large compared to n. In the talk, we review the idea of
constructing strong blocking sets based on so-called higgledy-piggledy lines.
Furthermore, we present a simple construction formed by a random set of
higgledy-piggledy lines which works for all q and n, and whose size is linear
in both n and q. Although the topic originates from coding theory, our focus
will be on the geometrical point of view.

Keywords: Strong blocking set; cutting blocking set; minimal code; higgledy-piggledy lines.

References
[1] Tamás Héger and Zoltán Lóránt Nagy. “Short Minimal Codes and Covering Codes via Strong Block-
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Finding cycles in supersingular isogeny graphs
Annamaria Iezzi

Università degli Studi di Napoli “Federico II” (Italy) — Dipartimento di
Matematica e Applicazioni

Joint work with: Jenny G. Fuselier, Mark Kozek, Travis Morrison and
Changningphaabi Namoijam.

Abstract
Supersingular isogeny graphs are graphs whose vertices correspond to (iso-

morphism classes of ) supersingular elliptic curves over finite fields and whose
edges represent (equivalence classes of ) isogenies between elliptic curves. A
cycle in such graphs corresponds to an isogeny from a supersingular curveE
(of the cycle) to itself, i.e. to an endomorphism ofE . Computing non-trivial
endormorphisms of a supersinguar elliptic curve , i.e. finding cycles in a super-
singular isogeny graph, is a computationally difficult problem which underlies
the hard problem of computing the endomorphism ring of a supersingular
elliptic curve over a finite field.

A motivation for this computational problem comes from cryptography,
and more precisely from a young subfield of post-quantum cryptography called
isogeny-based cryptography. The security of an isogeny-based cryptosystem
is based on the mathematical problem of computing an isogeny between two
elliptic curvesE andE ′ and it has been shown that, in the supersingular case,
this problem can be reduced to the computation of the endomorphism rings
ofE andE ′.

In this talk, after reviewing the mathematical and cryptographic context,
we will present an improved algorithm for computing the endomorphism ring
of a supersingular elliptic curve over a finite field.

Keywords: Supersingular elliptic curves; endomorphism ring; isogeny-based cryptography etc.
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Substructures in long root geometries
Paulien Jansen

University of Ghent (Belgium) — Algebra and Geometry

Joint work with: Hendrik Van Maldeghem

Abstract
Spherical buildings can be studied by looking at them from an incidence

geometrical perspective: to any spherical building one can attach the so called
long root geometry. For example, for a buildingAn(K), these are the point-
hyperplane flags of the projective space PG(n,K). For a buildingDn(K)
this is the linegrassmannian of the thin polar space of rank n.

The points of a long root geometry of a building of type Xn coincide
locally (i.e. in an appartment) with the long roots of a root system φ of type
Xn. By studying certain subsets this root systemφ, one can uncover interesting
substructures of the long root geometry (and of other geometries attached to
Xn). In this talk, we discuss this general phenomenon and zoom in on certain
examples, in particular those involving exceptional buildingsE6, E7, E8.

Keywords: Long root geometries, Projective spaces, Polar spaces, Root systems, Exceptional groups,
Spherical buildings
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Linear sets without points of weight one
Dibyayoti Dhananjay Jena

Ghent University (Belgium) — Department of Mathematics
and

University of Canterbury (New Zealand) — School of Mathematics and
Statistics

Joint work with: Geertrui Van de Voorde

Abstract
Linear sets in finite projective spaces can be thought as a generalization of

subgeometries. But unlike subgeometries, different linear sets with the same
rank and size can still exhibit widely different behaviour. Because of their use
in many applications, scattered linear sets (those of maximum size for a fixed
rank) have received more attention than other linear sets. In this talk we will
focus on the other side of the weight spectrum.

De Beule and Van de Voorde [3] provided a lower bound on the size of an
Fq-linear set of rank k with at least one point of weight one. In this talk, we
will explain how going below this limit with all points of weight more than
one leads to interesting results.

Keywords: Linear set

References
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Internal and External Partial Difference Families
Laura M Johnson

University of St. Andrews (United Kingdom) — Mathematics and Statistics

Joint work with: Sophie Huczynska

Abstract
A Disjoint Difference Family (DDF) is a combinatorial structure formed

from a collection of disjoint subsets of a group G, in which each group element
occurs precisely lambda times as a difference between two elements of the same
subset. An External Difference Family (EDF) is similarly formed by disjoint
subsets of G, with each element of G occurring exactly lambda times as a differ-
ence between elements of disjoint subsets. Both combinatorial structures have
been widely studied and have applications to cryptography.

In previous research by Chang and Ding, it was observed that a collection
of subsets partitioning G forms a DDF if and only if it also forms an EDF. Ex-
tending upon this idea, we began looking at partitions ofG\{0}, Difference
Sets (DSs) and Partial Difference Sets (PDSs). Our investigations gave rise to
two new combinatorial structures, namely a Disjoint Partial Difference Family
and External Partial Difference Family.

In this talk, I will introduce these structures, present constructions for DPDFs
and EPDFs and detail some applications of these structures.

Keywords: Internal and External Partial Difference Families, Cyclotomy, Difference Families

References
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The line graph of Lollipop and Pan graphs
Suliman Khan

University of Campania “Luigi Vanvitelli” (Italy)— Mathematics and
Physics

Joint work with: Vito Napolitano

Abstract
Line graphs are a rich and well-studied class of graphs. In this talk, I will

present some results on the line graph of Pan and Lollipop graph. In particular,
the domination, the chromatic and the independence numbers of the line
graphs of Lollipop and Pan graphs will be given. Also, I will discuss the relation
between the chromatic number and domination number of Pan graph with
the line graphs of Pan graph.

Keywords: Line graph; Pan graph; Lollipop graph; Independence number; Domination number;
Chromatic number.

References
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Girth-(bi)regular graphs and finite geometries
György Kiss

ELTE (Budapest) & University of Primorska (Slovenia)

Joint work with: Š. Miklavič and T. Szőnyi

Abstract
In this talk we consider girth-regular and girth-biregular graphs. Let Γ

denote a simple, connected, finite graph. For an edge e ofΓ letn(e) denote the
number of girth cycles containing e. For a vertex v of Γ let {e1, e2, . . . , ek}
be the set of edges incident to v ordered such that n(e1) ≤ n(e2) ≤ · · · ≤
n(ek). Then (n(e1), n(e2), . . . , n(ek)) is called the signature of v. The
graph Γ is said to be girth-(bi)regular if (it is bipartite, and) all of its vertices
(belonging to the same bipartition) have the same signature.

We show that girth-(bi)regular graphs are related to (biregular) cages, finite
projective and affine spaces and generalized polygons. We also present results
in the spirit of stability theorems: we give upper bounds on n(ek) ≤ M and
show that in the case when n(ek) = M − ε for some non-negative integer ε,
then ε = 0.

Keywords: girth cycle, girth-regular graph, generalized polygons

References
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Best match graphs and generalizations
Annachiara Korchmaros

Universität Leipzig (Germany) Bioinformatics Group

Joint work with: M. Hellmuth, D. Schaller, and P. F. Stadler

Abstract
Recent investigations in mathematical phylogenetics [1, 2] have focused

on quasi-best match graphs (qBMGs) which is a hereditary family of properly
vertex colored digraphs. qBMGs generalize best match graphs (BMGs) which
model the most closely related genes in a phylogentic tree. In this talk, we
will see some properties of BMGs, including the hierarchy-like structure of
the out-neighborhoods, bipartition, bi-transitivity, acyclicity of underlying
orientations, and characterization in terms of forbidden induced subgraphs.
Some of these properties also hold for qBMGs; however, whether this family
of graphs also have properties that well fit in structural graph theory has not
been completely investigated yet.

Keywords: Colored directed graphs, hierarchies, phylogentic combinatorics

References
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(k, n)-arcs and algebraic curves
Gábor Korchmáros

University of Basilicata
and

Eötvös L. University of Budapest (Hungary) AC Research Group

Joint work with: G.P. Nagy and T. Szőnyi

Abstract
InPG(2, q), a (k, n)-arc is a setK of k points such that some line meets

K in n points but no line meets K in more than n points. A (k, n)-arc K
is complete if each point in PG(2, q) lies on a line meeting K in n points.
(k, n)-arcs are truly combinatorial objects and have been investigated since
the pioneering work of B. Segre and A. Barlotti. The classical examples of
complete (k, n)-arcs in PG(2, q) are the non-degenerate conic for odd q,
k = q + 1, n = 2, and the Hermitian unital consisting of all points of
the non-degenerate Hermitian curve for k = q

√
q + 1, n =

√
q + 1.

Our objective is to obtain further plane algebraic curves C whose points in
PG(2, q) form a complete (k, n)-arc. In our investigation we adopt the
approach used by D. Bartoli and G. Micheli, depending on both combinatorics
and geometric methods from theory of algebraic curves over finite fields. The
essential idea is to express the condition that any point P ∈ PG(2, q) is
incident with a line which meets C in n pairwise distinct points, in terms of
the Galois closure of the algebraic extension F |FP where F is the function
field of C andFP is the rational subfield ofF arising from the projection of C
fromP . The most favorable situation in this context occurs when the Galois
group of the Galois closure ofF |FP is the symmetric, the alternating group
or the 2-dimensional projective linear group acting naturally on the roots of
the polynomial associated withF |FP . In fact, in such cases classical density
theorems, like Chebotarev theorem, work well and may provide a proof for the
completeness of the (k, n)-arc.

Keywords: (k, n)-arc, Galois closure, density theorem
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Polarity transformations of semipartial geometries
Vedran Krčadinac

University of Zagreb (Croatia) — Faculty of Science, Department of
Mathematics

Joint work with: M. Abreu, M. Funk, and D. Labbate

Abstract
Afamily of semipartial geometriesLP (n, q)was constructedby I.Debroey

and J. A. Thas [2] from the lines and planes of a projective space PG(n, q),
n ≥ 3. We will describe transformations of LP (4, q) using polarities of a
hyperplane inPG(4, q) or the quotient geometryPG(4, q)/P0 with respect
to a pointP0. The resulting incidence geometries are partial linear spaces with
constant point and line degrees. They are not semipartial geometries, but the
associated point and line graphs are strongly regular. The transformations were
discovered in the paper [1].

Keywords: semipartial geometry; polarity; strongly regular graph

References
[1] M. Abreu, M. Funk, V. Krčadinac, D. Labbate. “Strongly regular configurations”, preprint, 2021.

https://arxiv.org/abs/2104.04880
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The graph of 4-ary simplex codes of dimension 2
Mariusz Kwiatkowski

University of Warmia and Mazury (Poland) Faculty of Mathematics and
Computer Science

Joint work with: Mark Pankov

Abstract
Linear [n, k]q codes are k-dimensional subspaces of an n-dimensional

vector space over the field with q-elements. Projective codes are codes whose
every two columns of their generating matrices are non-proportional. Two
distinct linear codes are adjacent vertices of the Grassmann graph if they have
the maximal possible number of common codewords, i.e. the dimension of
their intersection is k − 1 dimensional. The restriction of the Grassmann
graph to projective codes is considered in [1]. Projective [n, k]q codes exist
if qk−1

q−1
≥ n in the case when this is an equality, projective codes are called

q-ary simplex codes of dimension k. In[2] we focus on the subgraph of 4-ary
simplex codes of dimension 2, it is a 25-regular graph on 162 vertices. We
give a complete description of the distance relation on this graph. This is a
connected graph of diameter 3. (the diameter of the correspondingGrassmann
graph is 2). For every vertex we determine the sets of all vertices at distance
1, 2, 3 from it, and give a description of the automorphism group of this graph.
This graph is not distance or flag transitive, but the automorphism group acts
transitively on pairs of vectors at distance 3.

Keywords: Projective codes, Simplex codes.

References
[1] M. Kwiatkowski, M. Pankov, A. Pasini, The graphs of projective codes Finite Fields Appl. 54 (2018),
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Binary Non-linear Codes with TwoDistances
Ivan N. Landjev

New Bulgarian University (Bulgaria) — Department Informatics

Joint work with: Assia Rousseva and Konstantin Vorobev

Abstract
In this paper, we consider the problem of determining the exact value of

A2(n, {d1, d2}) defined as the maximal cardinality of a binary code of length
n with two possible distances d1 and d2. We prove that if d2 > 2d1, it holds
A2(n, {d1, d2}) ≤ n+1. A similar bound is proved for codes with d1 6≡ d2
(mod 2):

A2(n, {d1, d2}) ≤
{

n+ 1 for d1 even,
n+ 2 for d1 odd.

Furthermore, we settle two conjectures left open in [1] that imply the following
exact values:

A2(n, {2, d}) =
{ (n

2

)
+ 1 for d = 4 and n ≥ 6,

n for 4 < d < n− 1,
n+ 1 for d = n− 1,

We present some other combinatorial constructions that improve on the lower
bounds onA2(n, {d1, d2}) known so far. Finally, we prove the general upper
bound

A2(n, {d1, d2}) ≤
(n+ 1)(n+ 2)

2
.

Keywords: two weight codes; codes with two distances; codes of almost constant weight; quasisym-
metric designs

References
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Quasi-Hermitian varieties inPG(3, q2)

Stefano Lia
University of Basilicata (Italy) — Department of Mathematics,

Informatics, Economy
Joint work with: Michel Lavrauw and Francesco Pavese

Abstract
Quasi-Hermitian varieties in PG(n, q2) have been introduced by De

Winter andSchillewaert [2] as combinatorial generalizationof (non-degenerate)
Hermitian varieties, being sets of points with the same intersection numbers
with hyperplanes as a non-degenerate Hermitian variety. In particular quasi-
Hermitian varieties are two-character sets, and correspond to strongly regular
graphs and two weight codes, [1]. In this talk we present a new construction
of such objects in the projective spacePG(3, q2), gluing point-orbits of the
groupPSL(2, q2) fixing a rational curve on an Hermitian surface. We also
discuss the isomorphism problem with previous constructions, showing that it
is actually a new family.

Keywords: Quasi-Hermitian varieties; two character sets; strongly regular graphs

References
[1] R. Calderbank, W.M. Kantor. “ The geometry of two-weight codes”, Bull. Lond. Math. Soc.,
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[2] S. De Winter, J. Schillewaerts. “A note on quasi-Hermitian varieties and singular quasi-quadrics”,
Bull. Belg. Math. Soc. Simon Stevin , 17(1): 911-918, 2010.
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(d,σ)-Veronese variety and (almost) MDS codes
Giovanni Longobardi

University of Padua (Italy) — Department of Management and Engineering

Joint work with: N. Durante and V. Pepe

Abstract
Let K be a field, A = Aut(K) be the automorphism group of K and

σ = (σ0, . . . , σd−1) ∈ Ad, d ≥ 1. In this talk the following generalization
of the Veronese map

νd,σ : 〈v〉 ∈ PG(n−1,K) −→ 〈vσ0⊗vσ1⊗· · ·⊗vσd−1〉 ∈ PG(nd−1,K),

is introduced and some properties of its image, called here (d,σ)-Veronese
variety Vd,σ, are analyzed. In particular, we focus on the case of a finite field
K = Fqt , where q = pe and p is a prime number. For d = t, σ a generator
of Gal(Fqt|Fq) and σ = (1, σ, σ2, . . . , σt−1), the (t,σ)-Veronese variety
Vt,σ was first introduced in [2]. Here, we will show thatVd,σ is the Grassmann
embedding of a normal rational scroll and any d+ 1 points of it are linearly
independent. We give a characterization of d+ 2 linearly dependent points
of Vd,σ and for some choices of parameters, we obtain that Vp,σ is the normal
rational curve, the Segre’s arc of PG(3, qt) for p = 2 and, for p = 3, it
is a |Vp,σ|-track of PG(5, qt). Finally, we investigate the link between such
points set and a linear code Cd,σ that can be associated to the variety, obtaining
examples of MDS and almost MDS codes.

Keywords: Veronesean, Grassmannian, normal rational scroll, almost MDS

References
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On the structure of cube tilings
Magdalena Łysakowska

University of Zielona Góra (Poland) — Institute of Mathematics

Abstract
A family [0, 1)d + T , T ⊆ Rd, of pairwise disjoint cubes such that the

union of them is the whole spaceRd is called a cube tiling ofRd. A family of
cubes [0, 1)d + S, s ⊆ Rd, is said to be an l-column, 1 ≤ l < d, if there
is i ∈ {1, . . . , d} and α ∈ R, and there are i1, . . . , il ∈ {1, . . . , d} and
αi1, . . . , α1l ∈ R such that

S = {s = (s1, . . . , sd) ∈ Rd : si = α, si1 = αi1, . . . , sil = αil}.

Every (d− 1)-column inRd is called a column.
Let T ⊆ Rd be such that [0, 1)d + T is a cube tiling of Rd and let

W ⊆ T . Then the family of cubes [0, 1)d +W is called a cylinder, if there is
i ∈ {1, . . . , d} andα ∈ R such that

W = {t = (t1, . . . , td) ∈ T : ti ∈ α + Z}.

The problem investigated in [1, 2, 3] of the existence of an l-column in a
cylinder in a cube tiling ofRd, due to Keller’s conjecture (in every cube tiling
ofRd there is a column), which is still open for d = 7, will be presented.

Keywords: cube tiling; Keller’s conjecture; column; cylinder

References
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Berge’s conjecture for cubic graphs with small
colouring defect

Edita Máčajová
Comenius University (Slovakia) — Department of Computer Science

Joint work with: Ján Karabáš, Roman Nedela, Martin Škoviera

Abstract
A long-standing conjecture of Berge suggests that every bridgeless cubic

graph can be expressed as a union of atmost five perfectmatchings. This conjec-
ture trivially holds for 3-edge-colourable cubic graphs, but remains widely open
for graphs that are not 3-edge-colourable. In this talk we show that Berge’s
conjecture is true for cubic graphs of colouring defect 3. Colouring defect, or
simply defect for short, is a measure of uncolourability of cubic graphs defined
as the minimum number of edges left uncovered by any collection of three per-
fect matchings. While 3-edge-colourable graphs have defect 0, every bridgeless
cubic graph with no 3-edge-colouring has defect at least 3. In 2015, Steffen
[1] proved that the Berge conjecture holds for cyclically 4-edge-connected
cubic graphs with defect 3 or 4. We extend this result to all bridgeless cubic
graphs irrespectively of their connectivity. Moreover, if the graph in question
is cyclically 4-edge-connected, then four perfect matchings suffice, unless it is
the Petersen graph. The result is best possible as there exists an infinite family
of cubic graphs with cyclic connectivity 3 which have defect 3 but cannot be
covered with four perfect matchings.

Keywords: Berge conjecture; coloring defect; cubic graph, perfect matching
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Amodular equality for Cameron-Liebler line classes
in PG(n, q), n ≥ 7 odd

Jonathan Mannaert
Vrije Universiteit Brussel (Belgium) — DIMA: Digital Mathematics

Joint work with: Jan De Beule

Abstract
In 1982 Cameron and Liebler tried to classify certain subgroup structures

in PG(3, q). As a byproduct they observed line classes that later adopted the
name Cameron-Liebler line classes. These line classes were also generalized
to line classes in PG(n, q). A Cameron-Liebler (CL) line class L is a set of
lines in PG(n, q), n ≥ 3, such that its characteristic vector χL is a linear
combination of the characteristic vectors of point-pencils. Typically, L has
a parameter x that satisfies |L| = xqn−1

q−1
. Note that it can be shown that x

is required to be an integer if n + 1 is even. In [2], it was proven that the
parameter x ∈ N of a CL line classL in PG(3, q) has to satisfy the equations
x(x − 1) + 2m(m − x) ≡ 0 (mod 2(q + 1)). Here m denotes the
number of lines ofL in any plane or through any point. In recent work, see
[1], a generalization of this modular equality was found for CL line classesL
in PG(n, q), with n ≥ 7 odd. Similarly, the parameter x ∈ N of the CL line
class needs to satisfy x(x− 1) + 2m(m− x) ≡ 0 (mod q + 1), withm
equals the number of lines ofL through any point.

Keywords: Cameron-Liebler line classes; projective space; non-existence results
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NewMRD codes from linear cutting blocking sets
Giuseppe Marino

University of Naples “Federico II” (Italy)

Joint work with: Daniele Bartoli and Alessandro Neri

Abstract
Minimal rank-metric codes or, equivalently, linear cutting blocking sets

are characterized in terms of the second generalized rank weight, via their
connection with evasiveness properties of the associated q-system. Using this
result, we provide the first construction of a family of Fqm-linear MRD codes
of length 2m that are not obtained as a direct sum of two smaller MRD codes.
In addition, such a family has better parameters, since its codes possess strictly
larger generalized rank weights than those of the previously known MRD
codes. This shows that not all the MRD codes have the same generalized rank
weights, in contrast to what happens in the Hamming metric setting.

Keywords: MRD codes; cutting blocking sets; q-systems, evasive subspaces; generalized rankweights
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OnVoloshin colorings in 3-hypergraph designs
Lucia Marino

University of Catania — Department of Mathematics and Informatics

Joint work with: Paola Bonacini

Abstract
Let P (3)(2, 4) be the hypergraph having {1, 2, 3, 4} as vertex set and

{{1, 2, 3},
{1, 2, 4}} as edge set. In this paper we consider vertex colorings ofP (3)(2, 4)-
designs in such a way any block is neither monochromatic nor polychro-
matic. We find bounds for the upper and lower chromatic numbers, show-
ing also that these bounds are sharp. Indeed, for any admissible v there ex-
ists a P (3)(2, 4)-design of order v having the largest possible feasible set.
Moreover, we study the existence of uncolorable P (3)(2, 4)-designs, prov-
ing that they exist for any admissible order v ≥ 28, while for v ≤ 13
any P (3)(2, 4)-design is colorable. Thus, a few cases remain open, precisely
v = 14, 16, 17, 18, 20, 21, 22, 24, 25, 26.

Keywords: Coloring, Hypergraph, Design
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The cylinder conjecture and divisible codes
Sam Mattheus

Vrije Universiteit Brussel (Belgium) — Department of Mathematics

Joint work with: Sascha Kurz

Abstract
The strong cylinder conjecture, as posed in a paper by Simeon Ball [1], is

a simple-to-state conjecture, but has resisted all attacks so far. For any prime
p, we can put it as follows: except for the set of points on p parallel lines in
AG(3, p), are there other sets of p2 points inAG(3, p) such that every plane
intersects it in 0(mod p) points? This conjecture builds on work of Rédei
regarding factorizations of elementary abelian groups and has been generalized
by Sascha Kurz and myself to the setting of divisible codes [2]. The latter
setting provides a natural context to extend the conjecture to prime powers
q and higher dimensions. We will discuss the historical context and the new
coding-theoretical setting in which it appears. Surprisingly, it turns out that
higher dimensional generalizations are equivalent to the original conjecture.
We will see that the latter is true for small primes by combinatorial techniques,
but fails for almost all prime powers, starting with q = 8. This shows that
the combinatorial approach quickly reaches its limits and new techniques are
necessary to advance us to a full solution.

Keywords: cylinder conjecture, divisible codes
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Highly edge-connected r-regular graphs without
r − 2 pairwise disjoint perfect matchings

Davide Mattiolo
University of Paderborn (Germany) — Department of Mathematics

Joint work with: Eckhard Steffen

Abstract
In this talk we present infinite families of highly edge-connected r-regular

graphs of even order which do not contain r − 2 pairwise disjoint perfect
matchings. When r is a multiple of 4, this result solves a problem stated by
Thomassen in [1].

Keywords: Regular graphs; perfect matchings.
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On the existence of globally simple relative non-zero
sumHeffter arrays

Lorenzo Mella
University of Modena (Italy) — Department of Mathematics

Joint work with: Anita Pasotti

Abstract
In [1] Costa, Della Fiore and Pasotti introduced a class of partially filled ar-

rays with entries in a cyclic group, called non-zero sumHeffter arrays. Whenever
the partial sums of every column (from top to bottom) and of every row (from
left to right) of an array are all distinct, the array is called globally simple. From a
globally simple (relative) non-zero sum Heffter array one can obtain two cyclic
orthogonal path decompositions of the complete (multipartite) graph.

In [2] we focus on completely filled square globally simple relative non-
zero sum Heffter arrays, denoted as NHt(n). In particular, we give direct
constructions for oddn and several values of t, completely solving the existence
problem of a globally simpleNHt(n) for every prime n and every admissible
t.

Keywords: Heffter arrays; orthogonal cyclic path decompositions.

References
[1] S. Costa, S. Della Fiore and A. Pasotti. “Non-zero sum Heffter arrays and their applications”, preprint

available at https://arxiv.org/abs/2109.09365.

[2] L. Mella and A. Pasotti. “Globally simple relative non-zero sum Heffter arrays”, in preparation.

101



Francesca
Merola13

8
5

3
2

21st
1 1 Combinatorics 2022

Mantova, Italy, 30 May – 3 June 2022

M
SC

(2
01

0)
:0

5B
07

,0
5B

30
M
SC

(2
01

0)
:0

5B
07

,0
5B

30

On anti-Novák cycle systems
Francesca Merola

Roma Tre University (Italy) — Department of Mathematics and Physics

Joint work with: Marco Buratti

Abstract
Novák’s conjecture [3] states that any cyclic Steiner Triple System of order

v ≡ 1 (mod 6) can be obtained from a set of disjoint base blocks. Until recently,
very little was known on the truth of this conjecture, but the recent paper by
Feng, Horsley and Wang [2] contains significant progress: besides considering
the original conjecture, the authors extend it to cyclic Steiner 2-designs, and
more generally to cyclic 2-designs. Motivated by this work, in this talk we will
consider instead a generalization to cyclic k-cycle systems: we show that in this
setting the generalized conjecture is false for k ≥ 5, construct some families
of counterexamples which arise and discuss related problems.

Keywords: Cyclic Steiner triple systems, cyclic cycle systems, Novák’s conjecture
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Flag-transitive, point-imprimitive symmetric
2-designs

Alessandro Montinaro
University of Salento (Italy) — Department of Mathematics and Physics ”E.

De Giorgi”

Abstract
Let D = (P ,B) be a symmetric 2-(v, k, λ) design admitting a flag-

transitive, point-imprimitive automorphism groupG that leaves invariant a
non-trivial partitionΣ ofP . C. E. Praeger and S. Zhou [4] have shown that,
there is a constant k0 such that, for each B ∈ B and ∆ ∈ Σ, the size of
|B ∩∆| is either 0 or k0. In this talk, which is based on the result contained
in [2], we show that, ifk > λ (λ− 3) /2 andk0 ≥ 3,D is isomorphic to one
of the flag-transitive, point-imprimitive symmetric 2-designs with parameters
(45, 12, 3) or (96, 20, 4) classified in [3] and in [1] respectively.

Keywords: Flag-transitive symmetric design; automorphism group.
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Characterization of association schemes arising from
finite geometry

Giusy Monzillo
University of Basilicata (Italy) — Department of Mathematics, Computer

Science and Economics

Abstract
One of the main goal within the theory of association schemes is, without

any doubt, that of characterizing known association schemes by their paramet-
ers, even better if arising from finite geometry. This problem has its roots in a
question originally posed by R.C. Bose [1] about strongly-regular graphs and
partial geometries.

The Penttila-Williford scheme [3] and tha Van Dam-Martin-Muzychuk
scheme [2] are characterized by their respective parameters.

Keywords: association schemes, generalized quadrangles
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Carlitz-like identities
Emanuele Munarini

Politecnico di Milano (Italy) — Dipartimento di Matematica

Abstract
In 1971, Carlitz obtained the following symmetric identity [1]

(−1)n
n∑

k=0

(
n

k

)
Bm+k = (−1)m

m∑
k=0

(
m

k

)
Bn+k

involving the Bernoulli numbers. This identity has been proved and generalized
in several ways by several authors. For instance, it has been generalized to the
Bernoulli polynomials

(−1)n
n∑

k=0

(
n

k

)
Bm+k(x) y

n−k = (−1)m
m∑
k=0

(
n

k

)
Bn+k(1−x−y) ym−k

and, more in general, to the q-Bernoulli numbers and polynomials.
Starting from these results, we obtain [2] a Carlitz-like identity for a large

class of polynomials. In particular, such an identity is satisfied by many clas-
sical polynomials, such as the generalized Bernoulli and Euler polynomials, the
generalized Hermite polynomials, and the Nörlund polynomials.

Keywords: combinatorial sums, umbral calculus, Appell polynomials, Sheffer matrices.
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Simplicity conditions for binary orthogonal arrays
Gábor P. Nagy

Budapest University of Technology and Economics (Hungary) —
Department of Algebra

Joint work with: Claude Carlet and Rebeka Kiss

Abstract
LetN, t, k be positive integers, t ≤ k, and S a finite set of cardinality s.

AnN × k arrayA with entries from S is said to be an orthogonal array with s
symbols, strength t, and index λ, if everyN × t subarray ofA contains each
t-tuple based on S exactly λ times as a row. An orthogonal array is simple, if
the rows are distinct. Supports of t-th order CI-functions give simple binary
orthogonal arrays with strength t, if their elements are written as rows.

In the theory of orthogonal arrays, the main question is to give – for given
number of columns, symbols and strength – the minimum value of N for
which a simple orthogonal array exists with N rows. We will denote this
value by F ∗(k, s, t). If we do not require simplicity, the minimum value of
rows is denoted byF (k, s, t). This problem is very hard even for the smallest
parameters s = t = 2.

In [1], Carlet and Guilley asked the the following question: IsF ∗(k, 2, t)
a monoton non-decreasing function when k grows and t remains fixed? In our
talk, we use Rao’s Bound to give a sufficient condition for an orthogonal array
to be simple. We apply this result to compute the minimum number of rows in
simple binary orthogonal arrays of strength 4 and 5.

Keywords: Correlation-immune Boolean functions; orthogonal arrays; Rao’s bound
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Looking for additive Steiner 2-designs
Anamari Nakić

University of Zagreb (Croatia)

Joint work with: Marco Buratti

Abstract
A 2-(v, k, λ) design is additive under an abelian group G if, up to iso-

morphism, the point-set is a subset of G and each block sums to zero. This
definition was the starting point of an interesting theory developed in [3].
What we found intriguing was that additive Steiner 2-designs appeared in
short supply; the only known classes were the point-line designs of AG(n, q)
if q > 2, and of PG(n, q) if either n or q is 2. Also, the only known sporadic
example was the famous 2-analog of a 2-(13, 3, 1) design found in [1] which
is an additive 2-(8191, 7, 1) design. Thus all known Steiner 2-designs had
block-size k equal to a prime power or a prime power plus one. Even though
we proved their existence for any k 6≡ 2 (mod 4) not of the form 2n3, it is dis-
appointing that the values of v are huge [2]. On the other hand we just found
a pair of “small” additive Steiner 2-designs not lying in the above mentioned
classes; a 2-(40, 4, 1) design which is additive under Z4

3 and a 2-(124, 4, 1)
design which is additive underZ3

5.

Keywords: Additive design; Steiner 2-design; difference methods.

References
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On some linear sets in finite projective spaces and the
associated codes

Vito Napolitano
Università degli Studi della Campania LUIGI VANVITELLI — Dipartimento

di Matematica e Fisica
Joint work with: Olga Polverino, Paolo Santonastaso and Ferdinando Zullo

Abstract
The relationship between subsets of points of finite projective spaces and

linear codes is a motivation for the study of such objects that are interesting
in themselves and therefore have attracted the attention of finite geometers,
combinatorists and coding theorists. In this talk I will present some results
concerning linear codes with few weights arising from some special linear sets
of finite projective spaces, in particular linear sets of the desarguesian projective
plane PG(2, qn). The talk is based on the papers [1, 2].

Keywords: Linear set; codes with few weights; MRD–code.
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Comparison between the eccentric connectivity index
and first Zagreb index of graph

Mohamad Nazri Husin
Universiti Malaysia Terengganu (Malaysia) — Faculty of Ocean

Engineering Technology and Informatics
Joint work with: Prof. Kinkar Chandra Das

Abstract
For a connected graphG, the eccentric connectivity index and the first

Zagreb index of G are defined as ξc(G) =
∑

vi∈V (G) diεi and M1(G) =∑
vi∈V (G) d

2
i , respectively, where di is the degree of vi in G and εi denotes

the eccentricity of vertex vi in G. Recently, Das and Trinajstić (2011)[1],
compared the eccentric connectivity index and Zagreb indices for chemical
tree and molecular graphs. However, the comparison between the eccentric
connectivity index and Zagreb indices, in the case of general trees and general
graphs, is very hards and remains unsolved till now. In this paper we compare
the eccentric connectivity index and the first Zagreb index of graphs, where
�(T ) = ξc(T )−M1(T ) for any tree T . As a results, we proved that�(T )
is minimum for T is caterpillar.

Keywords: Tree graph; Caterpillar graph; Eccentric connectivity index (ξc); First Zagreb index
(M1).
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Strong blocking sets and minimal codes from graphs
Alessandro Neri

Max Planck Institute for Mathematics in the Sciences (Germany)

Abstract
Strong blocking sets are special sets of n points in PG(k − 1, q), such

that their intersection with each hyperplane generates the hyperplane itself.
They have recently been shown to correspond to k-dimensional minimal linear
codes in Fn

q , even though they were originally introduced as a tool to construct
families of covering codes. In this talkwepropose a generalmethod to construct
small strong blocking sets starting from a set of points in PG(k − 1, q) and a
graph with special connectivity properties.

Keywords: blocking sets; strong blocking sets; rook graph; minimal linear codes.
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Complementary prisms: their cores, automorphism
groups, isoperimetric numbers, hamiltonian

properties, etc.
Marko Orel

University of Primorska (Slovenia)

Abstract
Given a finite simple graph Γ its complementary prism is the graph ΓΓ̄

that is obtained from Γ and its complement Γ̄ by adding a perfect matching,
where each its edge connects two copies of the same vertex in Γ and Γ̄. If Γ is
the pentagon, then ΓΓ̄ is the Petersen graph, which is known to be a core, i.e.
all its endomorphisms are automorphisms. The talk will address the following
question: Which properties on Γ guaranty that its complementary prism
ΓΓ̄ is a core? The main focus will be on vertex-transitive self-complementary
graphsΓ, since in this caseΓΓ̄ is vertex-transitive (but not a Cayley) graph, and
on strongly regular self-complementary graphs. In addition, the automorphism
group and the isoperimetric number ofΓΓ̄will be described for arbitrary simple
graph Γ. Hamiltonian properties of regular complementary prisms will be
addressed as well. Some of the proofs (and open problems) involve graph
spectrum and the Lovász theta function. The talk will be based on [1].

Keywords: graph homomorphism; core; automorphism group; self-complementary graph; vertex-
transitive graph; strongly regular graph; non-Cayley graph; isoperimetric number; graph spectrum
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Ghosts arising from polynomials
Silvia M.C. Pagani

Università Cattolica del Sacro Cuore (Italy) — Department of
Mathematics and Physics “N. Tartaglia”

Joint work with: Marco Della Vedova (UniBG) and Silvia Pianta (UniCatt)

Abstract
Given a pointP in PG(n, q), its Rédei factor is the linear polynomial in

n+ 1 variables, whose coefficients are the point coordinates. The power sum
polynomialGS associated to a multi-subsetS of the projective plane PG(2, q)
is the sum of the (q − 1)-th powers of the Rédei factors of the points of S [3].
The classification ofmulti-subsets having the same power sumpolynomial bases
on the determination of those multi-subsets associated to the zero polynomial,
called ghosts. In fact, two multi-subsets S1 and S2 such that GS1 = GS2

“differ” by a ghostZ , namely, S2 = S1 ]p Z , where]p is the multiset sum
modulo p (the field characteristic).

In this talk we investigate the space of ghosts, compute its dimension and
characterize some classes of ghosts. Moreover, we explicitly enumerate ghosts
for planes of small order. The present talk is based on [1, 2].

Keywords: Ghost; multiset sum; power sum polynomial; projective plane
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New result on permutation binomials
Vincenzo Pallozzi Lavorante

Joint work with: Xiang-dong Hou

Abstract
After a brief review of existing results on permutation binomials of finite

fields, we introduce the notion of equivalence among permutation binomials
(PBs) and describe how to bring a PB to its canonical form under equivalence.
We then focus on PBs ofFq2 of the formXn(Xd(q−1)+a), wheren and d are
positive integers and a ∈ F∗

q2 . Our contributions include two nonexistence
results: (1) If q is even and sufficiently large andaq+1 6= 1, thenXn(X3(q−1)+
a) is not a PB ofFq2 . (2) If 2 ≤ d | q+1, q is sufficiently large and aq+1 6= 1,
thenXn(Xd(q−1) + a) is not a PB of Fq2 under certain additional conditions.
(1) partially confirms a recent conjecture by Tu et al. (2) is an extension of a
previous result with n = 1.

Keywords: finite field, Hasse–Weil bound, permutation binomial
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Comparing balancedZv-sequences obtained from
ElGamal function to random balanced sequences

Daniel Panario
Carleton University (Canada) — School of Mathematics and statistics

Joint work with: Lucas Perin and Brett Stevens

Abstract
We investigate the randomness properties of sequences inZv derived from

permutations in F∗
p using the remainder function. Motivated by earlier stud-

ies with a cryptographic focus, we compare sequences constructed from the
ElGamal function x → gx for x ∈ Z>0 and g a primitive element of F∗

p, to
sequences constructed from random permutations of F∗

p.
We prove that sequences obtained from ElGamal have maximal period and

behave similarly to random permutations with respect to the balance and run
properties of Golomb’s postulates for pseudo-random sequences. Additionally
we show that they behave similarly to random permutations for the tuple
balance property. This requires some work to determine properties of random
balanced periodic sequences. In general, for these properties and excepting
for very unlikely events, the ElGamal sequences behave the same as random
balanced sequences.

Keywords: Randomness in finite fields; ElGamal function; Golomb postulates.
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The graph of non-degenerate linear codes
Mark Pankov

University of Warmia and Mazury (Poland) — Faculty of Mathematics and
Computer Science

Abstract
Let Γ(n, k)q be the graph consisting of all non-degenerate linear [n, k]q

codes with 1 < k < n − 1; two such codes are connected by an edge in
this graph if they have the maximal number of the same codewords. This is a
subgraph of the Grassmann graph formed by k-dimensional subspaces of an
n-dimensional vector space over the q-element field. All automorphisms of the
Grassmann graph are known; they are induced by semilinear automorphism
of the vector space or seimilear isomorphisms to the dual vector space and the
second possibility is realized only for n = 2k. We prove the following

• If q ≥ 3 or k 6= 2, then every isomorphism of Γ(n, k)q to a subgraph
of the Grassmann graph can be uniquely extended to an automorphism
of the Grassmann graph. In other words, a subgraph of the Grassmann
graph isomorphic to Γ(n, k)q is unique up to automorphism.

• In the case when q = k = 2, the Grassmann graph contains subgraphs
isomorphic to Γ(n, k)q and such that isomorphisms between these sub-
graphs and Γ(n, k)q cannot be extended to automorphisms of the Grass-
mann graph.

Keywords: Grassmann graph; linear code
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On non-zero sumHeffter arrays
Anita Pasotti

University of Brescia — DICATAM

Joint work with: Simone Costa, Stefano Della Fiore

Abstract
In [2] we introduced a new class of partially filled arrays that, as Heffter

arrays [1], are related todifference families, graphdecompositions andbiembed-
dings. A non-zero sum Heffter array NH(m,n;h, k) is anm × n partially
filled array with entries in Z2nk+1 such that: each row contains h filled cells
and each column contains k filled cells; for every x ∈ Z2nk+1 \ {0}, either x
or−x appears in the array; the sum of the elements in every row and column
is different from 0 (inZ2nk+1). Existence results and connections with other
topics will be presented.

Keywords: Heffter array, orthogonal cyclic path decomposition
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Clifford-like parallelisms and their automorphisms
Stefano Pasotti

Università degli Studi di Brescia (Italy) — DICATAM Sez. di Matematica

Joint work with: H. Havlicek and S. Pianta

Abstract
It is well known that the three dimensional real projective space PG(3,R)

can be endowed with two projectively equivalent parallelisms, namely the left
and right Clifford parallelisms. In [1] we extended this definition of Clifford
parallelisms to the case of a commutative fieldF of any characteristic and we
proposed a technique for the construction of a class of “Clifford-like” regular
parallelisms of PG(3, F ) which has no counterpart in the classical case.

Here we present necessary and sufficient conditions for the existence of
Clifford-like parallelisms that are not Clifford and a description of their auto-
morphism group by comparing it with the automorphism group Γ of the left
Clifford parallelism. Since the linear part of Γ is the same for all Clifford-like
parallelisms which can be associated to it, we study the action of Γ on parallel
classes in order to characterise Clifford parallelisms among Clifford-like ones
(See [2, 3]).

Keywords: Clifford parallelism; Clifford-like parallelism; Projective double space; quaternion skew
field; Automorphism
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Onm-ovoids of elliptic quadrics
Francesco Pavese

Polytechnic University of Bari (Italy)

Joint work with: A.L. Gavrilyuk and K. Metsch

Abstract
Anm-ovoid of a finite polar spaceP is a setO of points such that every

maximal subspace ofP contains exactlym points ofO. In this talk it will be
shown that in the case whenP is an elliptic quadricQ−(2r + 1, q) of rank
r in F2r+2

q , an m-ovoid exists only if m satisfies a certain modular equality,
which depends on q and r. This condition rules out many of the possible
values ofm. A characterization of them-ovoids ofQ−(7, q) for q = 2 and
(m, q) = (4, 3) will also be discussed.

Keywords: Elliptic quadric;m-ovoid.
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Small configurations and some structure theorems for
Steiner triple systems

Marco Pavone
University of Palermo (Italy) — Dipartimento di Ingegneria

Abstract
An interesting and elegant paper on Steiner triple systems was published

in 2010 [1], where the authors characterized the classes of Hall triple systems,
affine Hall triple systems and affine Steiner triple systems in terms of avoidance
of certain small configurations. In 2012 some other authors [2] improved
and simplified two of the characterizations in [1]. In this talk we present
some of the results of a paper in preparation, one of which is an improvement
of the characterization of affine Steiner triple systems in [1]. Moreover, we
simplify the proof of the other characterizations in [1] and [2], and present
new characterizations of Hall triple systems, affine Hall triple systems and
projective triple systems in terms of various small configurations, such as Pasch
configurations, mitres, grids, and the configurationsC1

S, C
2
S, andC14.

Keywords: Steiner triple system, Affine triple system, Hall triple system, forbidden configuration,
Pasch configuration, mitre.

References
[1] D. Král’, E. Máčajová, A. Pór, J.-S. Sereni. “Characterisation results for Steiner triple systems and their

application to edge-colourings of cubic graphs”, Canad. J. Math., 62: 355–381, 2010.

[2] K. Petelczyc, M. Prażmowska, K. Prażmowski, M. Żynel. “A note on characterizations of affine and
Hall triple systems”, Discrete Math., 312: 2394–2396, 2012.
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Linear sets with points of weight larger than 1
Valentina Pepe

Sapienza University of Rome (Italy) SBAI Department

Joint work with: B.Csajbók and G.Marino

Abstract
LetV be anr-dimensional vector space overFqn . Apoint setLofPG(V, qn) =

PG(r−1, qn) is called anFq-linear set of rankk if it is defined by the non-zero
vectors of a k-dimensional Fq-vector subspaceU of V , i.e.

L = LU = {〈u〉Fqn
: u ∈ U \ {0}}.

For a point P = 〈z〉Fqn
∈ PG(V, qn) the weight of P with respect to

the linear setLU iswLU
(P ) := dimq(〈z〉Fqn

∩ U).
Let LU be a linear set such that wLU

(P ) > 1 for every P ∈ LU . We
determine whenLU is a linear set over a field Fqd , d|n, d > 1.

Keywords: Linear sets; Finite fields
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Automorphisms of generalized Grassmann graphs
Krzysztof Petelczyc

University of Białystok (Poland) — Faculty of Mathematics

Joint work with: Mark Pankov and Mariusz Żynel

Abstract
The Grassmann graph is the adjacency graph of the Grassmann space.

Classical Chow’s theorem describes automorphisms of this graph.
TheGrassmannian ofm-dimensional subspaces of a complexHilbert space

can be naturally identified with the conjugacy class of rank-m projections. In
[1] we extend the adjacency relation from a conjugacy class of projections to
a conjugacy class C of finite-rank self-adjoint operators, and study the cor-
responding generalized Grassmann graph ΓC . Using an approach based on
Johnson graphs, in [2] we show that, under the assumption that operators from
C have more than two eigenvalues, every automorphism of ΓC is induced by a
unitary or anti-unitary operator up to a permutation of eigenspaces with the
same dimensions.

Keywords: Grassmann graph; conjugacy class of finite rank self-adjoint operators; graph automorph-
ism; preserver problems

References
[1] M. Pankov, K. Petelczyc, M. Żynel “Generalized Grassmann graphs associated to conjugacy classes of

finite-rank self-adjoint operators”, Linear Algebra Appl. 627 (2021), 1–23.

[2] M. Pankov, K. Petelczyc, M. Żynel “Automorphisms of graphs corresponding to conjugacy classes of
finite-rank self-adjoint operators”, submitted
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Minimum size linear sets and critical pairs
Olga Polverino

Università degli Studi della Campania “Luigi Vanvitelli” (Italy)

Joint work with: Vito Napolitano, Paolo Santonastaso and Ferdinando Zullo

Abstract
Linear sets have been deeply studied and there is still a massive attention

on them, as they have been used to construct and classify several objects. In this
talk we will deal with linear sets ofminimum size in PG(1, qn) [3]. Examples
of these linear sets have been found by Lunardon and Polverino (2000) and,
more recently, by Jena and Van de Voorde in [4]. However, classification results
forminimum size linear sets of rankk are knownonly fork ≤ 5. In this talkwe
will provide classification results for linear sets ofminimumsizewhenn is prime,
answering to a question posed in [4]. Then we construct new examples whenn
is not prime. The main tool relies on studying pairs of subspaces, critical pairs,
attaining the equality in the linear analogue of Cauchy-Davenport’s theorem
[1, 2]. The talk is based on the paper arXiv:2201.02003.

Keywords: Linear set; minimum size; critical pair.

References
[1] C. Bachoc, O. Serra, G. Zémor. “An analogue of Vosper’s theorem for extension fields”, Math. Proc.

Cambridge Philos. Soc. 163(3):423–452, 2017.

[2] C. Bachoc, O. Serra, G. Zémor. “Revisiting Kneser’s theorem for field extensions”, Combinatorica
38(4):759–777, 2018.

[3] J. De Beule, G. Van de Voorde. “The minimum size of a linear set”, Journal of Combinatorial
Theory, Series A, 164:109–124, 2019.

[4] D. Jena, G. Van de Voorde. “On linear sets of minimum size”, Discrete Mathematics,
344(3):112230, 2021.
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4-sets in Union-Closed Families
Jonad Pulaj

Davidson College (USA) — Department of Mathematics and Computer
Science

Joint work with: Kenan Wood

Abstract
Frankl’s conjecture (FC) states that for every family of sets that is closed

under union, there is an element that belongs to at least half the sets in the
family. Local configurations are families of sets whose presence ensures that FC
holds for any family which is closed under union and contains them. It is easy
to see that a single 1-set or a single 2-set are local configurations. Unfortunately
a single 3-set is not a local configuration. A natural question is to consider
minimal number of 3-sets that are local configurations. Recently we gave a
polyhedral version of the main theorem for the classification of local config-
urations [3], and the resulting computational framework settled the question
of 3-sets in union-closed families [2]. In this talk we will discuss preliminary
results on minimal collections of 4-sets that are local configurations, improving
on results in Morris [1]. We will also discuss implications for improving lower
bounds on the size of the ground set for FC.

Keywords: Frankl’s conjecture; Union-Closed Families; Local Configurations.

References
[1] R. Morris. “FC-families and improved bounds for Frankl’s conjecture”. European Journal of

Combinatorics 27.2 (2006), 269–282.

[2] J. Pulaj. “Cutting planes for families implying Frankl’s conjecture”. Mathematics of Computa-
tion 89 (2020), 829–857.

[3] J. Pulaj. “Characterizing 3-sets in Union-Closed Families”. Experimental Mathematics (2021),
1–12.

123



Tahseen
Rabbani13

8
5

3
2

21st
1 1 Combinatorics 2022

Mantova, Italy, 30 May – 3 June 2022

M
SC

(2
01

0)
:2

0C
40

,2
0B

40
M
SC

(2
01

0)
:2

0C
40

,2
0B

40

49,487,367,289: On enumeration and computational
construction of groups of order 1024

Tahseen Rabbani
University of Maryland, College Park (USA) — Department of Computer

Science
Joint work with: Josue Avila Artavia

Abstract
In 2000, H.U. Besche, B. Eick, and E.A. O’Brien reported that there were

49,487,365,422 groups of order 1024 – which accounts for more than 99%
of groups of order at most 2000. This number, proposed via an amalgamation
of computational group theory and computer engineering, remained unchal-
lenged for 2 decades until a recent correction byD. Burrell suggesting that there
are actually 49,487,367,289 such groups. In this work, we review the primary
counting method to arrive at these figures – the p-group generation algorithm,
and provide a unified set of proofs for its underlying theory, which was pre-
viously scattered about in folklore. We then demonstrate how to efficiently
construct groups of order 1024 using GAP and parallel programming. These
techniques provide a framework for developing a complete library of 1024
groups, which is the only “small” order collection absent from the well-known
Small Groups super-library in GAP.

Keywords: computational group theory; small groups; parallel programming; GAP

References
[1] Hans Ulrich Besche, Bettina Eick, E.A. O’Brien. “The groups of order at most 2000.”, Electronic

Research Announcements of the American Mathematical Society 7, 1–4, 2000.

[2] David Burrell. “On the number of groups of order 1024”, Communications in Algebra, 1–3,
2021.
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Decomposition of cubic graphs with cyclic
connectivity 6 and beyond

Jozef Rajník
Comenius University in Bratislava (Slovakia) — Department of Computer

Science
Joint work with: Edita Máčajová

Abstract
Cyclic edge-connectivity, that is the minimum number of edges we need

to remove to separate two cycles, is an important invariant of graphs, especially
with regards to some famous conjectures. A component of a cyclically k-edge-
connected cubic graph separated by a cycle separating k-edge-cut is called a
cyclic k-part. We discuss how a cyclic k-part can be completed to a cyclically
k-edge-connected cubic graph. Our work extends the results of Andersen et al.
[1] for the case k = 4, and our recent results [2] for the case k = 5.

We prove that if we join two cyclic k-parts, both different from the k-cycle,
by interconnecting their degree 2 vertices without creating a cycle of length
shorter than k, then the resulting cubic graph is cyclically k-edge-connected.
Using this result we show that each cubic graph with cyclic connectivity 6 can
be decomposed into two cyclically 6-edge-connected graphs, where its cyclic
6-parts are completed by adding 8 additional vertices forming two 6-cycles
that share a path of length three.

Keywords: cubic graphs, cyclic connectivity, decomposition, girth

References
[1] L. Andersen, H. Fleischner, B. Jackson, “Removable edges in cyclically 4-edge-connected cubic graphs”,

Graphs Combin. 4:1–21, 1988

[2] E. Máčajová, J. Rajník, “Decomposing Cubic Graphs with Cyclic Connectivity 5”, In: J. Nešetřil, G.
Perarnau, J. Rué, O. Serra (eds) Extended Abstracts EuroComb 2021. Trends in Mathematics
14:580–585, 2021.

125



Assia P.
Rousseva13

8
5

3
2

21st
1 1 Combinatorics 2022

Mantova, Italy, 30 May – 3 June 2022

M
SC

(2
01

0)
:9

4B
05

,9
4B

27
,0

5B
25

,5
1E

20
M
SC

(2
01

0)
:9

4B
05

,9
4B

27
,0

5B
25

,5
1E

20

Ternary Linear Codes and Blocking Sets in PG(5, 3)
Assia P. Rousseva

Sofia University (Bulgaria) — Faculty of Mathematics and Informatics

Joint work with: Ivan Landjev and Emeliyan Rogachev

Abstract
Weconsider theproblemofdetermining the exact value ofnq(k, d)defined

as theminimal length of a linear code of fixed dimensionk, and fixedminimum
distance d over the field Fq . For fixed k and q this problem is a finite one since
Griesmer codes exist for all sufficiently larged. A closely related geometric prob-
lem, formulated by Hamada some thirty years ago, is to characterize all block-
ing (multi)sets in PG(t, q) with parameters

(∑t−1
α=0 εαvα+1,

∑t−1
α=0 εαvα

)
,

where vk = (vk − 1)/(v− 1). In this paper, we characterize all blocking sets
with parameters (vt + 2vt−1 + ε, vt−1 + 2vt−2) in PG(t, q), where t ≥ 3,
q ≥ 3, ε ∈ {0, 1, 2}.

For q = 3, the exact value ofn3(k, d) is known for alld, and allk ≤ 5. In
a recent paper, [1] it was reported that the exact value ofn3(6, d) is known for
all but 70 values of d. The characterization of the blocking sets with the above
parameters is used to prove the nonexistence of the hypothetical Griesmer
codes for q = 3, k = 6, and d = 100, 343, . . . , 346. This solves five open
cases in the tables from [1].

Keywords: optimal linear codes; Griesmer bound; blocking sets; the main problem of coding theory

References
[1] T. Sawashima, T. Maruta, “Nonexistence of some ternary linear codes with minimum weight −2

modulo 9”, Adv. Math. Comm. 2022, to appear.
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Edge-transitive Nest graphs of twice odd order
János Ruff

University of Pécs (Hungary) — Institute of Mathematics and Informatics

Joint work with: István Kovács

Abstract
A graph admitting an automorphism with two orbits of the same length

is called a bicirculant. The Nest graphs are the members of a 5-parameter
family of hexavalent bicirculants, which was introduced by Jajcay et al. (Elec-
tron. J. Combin., 2019). We show that, up to isomorphism, the complement of
the Petersen graph is the only edge-transitive Nest graph whose order is twice
an odd number.

The main result is the following:
Theorem 1. If G = N (n; a, b, c; k) is an edge-transitive Nest graph for an
odd number n, then G is isomorphic to the complement of the Petersen graph.

Keywords: edge-transitive, Nest graph, bicirculants

References
[1] R. Jajcay, Š.Miklavič, P. Šparl, andG. Vasiljević “On certain edge-transitive bicirculants,” Electron.

J. Combin., 26 (2) (2019).
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On subspace designs
Paolo Santonastaso

Università degli Studi della Campania “Luigi Vanvitelli” (Italy)

Joint work with: Ferdinando Zullo

Abstract
In this talk, we will investigate the theory of subspace designs, which have

been originally introduced by Guruswami and Xing in [1] to give the first
construction of positive rate rank-metric codes list decodable beyond half the
distance.
A collectionofFq-subspacesU1, . . . , Ut ⊆ V (k, qm) is called an (s, A)q-subspace
design if

∑t
i=1 dimFq(Ui∩W ) ≤ A, for everyFqm-subspaceW ⊆ V (k, qm)

of dimension s.
When t = 1, (s, A)q-subspace designs coincide with the notion of evasive

subspace, originally introduced by Pudlák and Rödl. We will provide bounds
involving the dimension of the subspaces forming a subspace design and the
parameters of the ambient space, showing optimal constructions with respect
to these bounds. Then we will also introduce two dualities relations among
them. Special attention will be paid to (s, s)q-subspace designs that generalize
the notion of s-scattered subspace introduced by Csajbók, Marino, Polverino
and Zullo. We will show that, for certain values of s, they are associated with
linear maximum sum-rank metric codes. Morover, in the case s = 1, we will
provide several examples and we will get families of two-intersection sets with
respect to hyperplanes (and hence two-weight linear codes).

Keywords: Subspace design; subspace evasive subspace; sum-rank metric code

References
[1] V. Guruswami, C. Xing. “List decoding Reed-Solomon, algebraic-geometric, and Gabidulin subcodes

up to the Singleton bound”, In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing 2013, 843–852.
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Designs in finite general linear groups
Kai-Uwe Schmidt

Paderborn University (Germany) — Department of Mathematics

Joint work with: Alena Ernst

Abstract
It is known that the notion of a transitive subgroup of a permutation

group G extends naturally to subsets of G. This talk is about subsets of the
general linear groupGL(n, q) acting transitively on flag-like structures, which
are common generalisations of t-dimensional subspaces of Fn

q and bases of
t-dimensional subspaces of Fn

q . I shall discuss structural characterisations of
transitive subsets of GL(n, q) using the character theory of GL(n, q) and
interprete such subsets as designs in the conjugacy class association scheme of
GL(n, q). While transitive subgroups of GL(n, q) are quite rare, it will be
shown that, for all fixed t, there exist nontrivial subsets ofGL(n, q) that are
transitive on linearly independent t-tuples ofFn

q , which also shows the existence
of nontrivial subsets ofGL(n, q) that are transitive on more general flag-like
structures. These results can be interpreted as q-analogs of corresponding
results for the symmetric group.

Keywords: Association schemes, designs, finite general linear groups, transitivity
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Cyclic Line Spreads and Linear Spaces
John Sheekey

University College Dublin (Ireland) — School of Mathematics and
Statistics

Joint work with: Cian Jameson

Abstract
There has been much progress towards classifying linear spaces that possess

a flag-transitive automorphism group. However, a complete classification is
not available, as the case in which the automorphism group is a subgroup of
one-dimensional affine transformations remains open; in particular, linear
spaces constructed from spreads possessing a transitive automorphism group.

In [1], Pauley andBamberg constructed new flag-transitive linear spaces via
spreads upon which a cyclic group acts transitively. and provided a condition
for such spreads to exist in terms of an associated polynomial.

In this talk, we will present our work on describing and classifying the
polynomials that give rise to the desired spreads and linear spaces. We will
focus on the case of cubic polynomials, corresponding to cyclic line spreads in
PG(5, q).

Keywords: spread, linear space, transitive, automorphism

References
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Snarks with resistance n and flow resistance 2n
Martin Škoviera

Comenius University (Bratislava) — Department of Computer Science

Joint work with: Imran Allie, Edita Máčajová

Abstract
We examine the relationship between two measures of uncolourability of

cubic graphs – their resistance and flow resistance. The resistance of a cubic
graphG, denoted by r(G), is the minimum number of edges whose removal
results in a 3-edge-colourable graph. The flow resistance of G, denoted by
rf(G), is the minimum number of zeroes in a 4-flow on G. Fiol et al. [1]
made a conjecture that rf(G) ≤ r(G) for every cubic graphG. We disprove
this conjecture by presenting a family of cubic graphsGn of order 34n, where
n ≥ 3, with resistance n and flow resistance 2n. For n ≥ 5 these graphs are
nontrivial snarks.

Keywords: edge colouring; nowhere-zero flow; snark

References
[1] M. A. Fiol, G. Mazzuoccolo, E. Steffen, “Measures of edge-uncolourability of cubic graphs.”, Elec-

tron. J. Combin., 25, Paper #P4.54, 2018.
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Partial ovoids of symplectic and Hermitian polar
spaces, large cocliques in the collinearity graph and

applications
Valentino Smaldore

Università degli Studi della Basilicata (Italy) — DiMIE

Joint work with: Michela Ceria, Jan De Beule and Francesco Pavese

Abstract

LetP be a finite classical polar space of PG(n, q). An ovoid O ofP is
a set of points of P such that every generator of P has exactly one point in
common withO. In the case whenP does not admit ovoids, it is possible to
introduce the notion of partial ovoid, such that every generatormeets the ovoid
in at most one point. In this case, the question about the size of the largest
(maximal) partial ovoid naturally arises.

The collinearity graph ΓP = (V,E) of a polar space is the graph whose
vertex set V is the set of points of P and in which adjacency belongs from
collinearity. Large partial ovoids in generalized quadrangles correspond to
large cocliques in the corresponding collinearity graphs.

In this talk some constructive lower bounds on the sizes of the largest partial
ovoids of the symplectic polar spaceW (3, q), q odd square and q 6= 3h and
W (5, q) and of the Hermitian polar spaceH(4, q2), q 6= 3h,H(6, q2) and
H(8, q2) will be discussed. Large cocliques in ΓW (3,q) have applications in
Ramsey theory, too.

Keywords: Partial ovoids; symplectic polar spaces; Hermitian polar spaces

References
[1] A. Bishnoi. “Finite Geometry and Ramsey Theory”, https://anuragbishnoi.files.word-
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[3] G. Tallini. “Fibrazioni mediante rette in una quadratica non singolareQ4,q di PG(4, q)”, Atti Ac-
cademia Peloritana dei Pericolanti Classe I di Scienze Fis. Mat. e Nat., 66:127–146,
1988.
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Rigidity and flexibility of rod configurations
Klara Stokes

Umeå University (Sweden) — Mathematics and Mathematical Statistics

Joint work with: Signe Lundqvist and Lars-Daniel Öhman

Abstract
A rod configuration is a geometric configuration of points and lines in

Euclidean space together with a notion of motion for which the lines are rigid
bodies. More precisely, a motion of a rod configuration is a motion of the
points such that the distances between collinear points are preserved. Any rod
configuration is moved by the Euclidean motions. Rod configurations that
only admit the Euclidean motions are called rigid.

In this talk I will give new examples of flexible rod configurations and
I will explain how to combinatorially characterize the incidence geometries
that give rise to rod configurations in the plane that are infinitesimally rigid in
sufficiently generic position.

Keywords: Combinatorial rigidity, rod configuration

References
[1] Signe Lundqvist, Klara Stokes, Lars-Daniel Öhman “Exploring the infinitesimal rigidity of planar
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Hamiltonian graphs in Abelian 2-groups
Kristijan Tabak

Rochester Institute of Technology — Zagreb Campus

Abstract
We analyze a graphG with vertices that are subgroups ofZk

2 isomorphic
to Z2 × Z2. Two vertices are adjacent if they, as subgroups, have nontrivial
intersection. We show that such a graph is 6(2k−2 − 1)-regular. In such cae, a
classical theorem byOre proves that a graph is Hamiltonian if the degree of any
vertex is at least one half of the number of vertices. Ore’s theorem is applicable
for k ∈ {3, 4}.Nevertheless, we manage to construct a Hamiltonian cycle
for k = 5.Our construction uses orbits of oneZ4

2 group under an action of
an automorphism of order 31. It is highly likely that this approach could be
generalized for k > 5.

Keywords: Hamiltonian Graph; Graph; Elementary Abelian Group; Subgroup; Group Ring

References
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H-colorings in cubic and r-regular graphs
Gloria Tabarelli

University of Trento (Italy) — Department of Mathematics

Joint work with: G. Mazzuoccolo and J.P. Zerafa

Abstract
LetH andGbe graphs: anH-coloring ofG is amapf : E(G) → E(H)

such that for any vertex v ∈ V (G) there exists a unique vertex u ∈ V (H)
with f(∂G(v)) = ∂H(u), where ∂G(v) denotes the set of edges incident to
the vertex v in the graphG. IfG admits anH-coloring we say thatH colorsG.
The question if there exists a graphH that colors every bridgeless cubic graphG
is addressed directly by the Petersen-coloring conjecture, which posesH equal
to the Petersen graph. Actually it has been shown that if the Petersen-coloring
conjecture is true, the Petersen graph is the unique connected bridgeless cubic
graphH which can color all the bridgeless cubic graphs. In this talk we survey
some known results onH-colorings of graphs, considering several different
assumptions onH andG, and provide somenew results concerning uniqueness
ofH in the above sense.

Keywords: Cubic Graph; Petersen Colouring Conjecture; Regular Graph; Multigraph.

References
[1] A. Hakobyan, V. Mkrtchyan. “S12 and P12-colorings of cubic graphs”, Ars Math. Contemp.,

17:431–445, 2019.

[2] G. Mazzuoccolo, G. Tabarelli, J.P. Zerafa. “On the existence of graphs which can colour every regular
graph”, submitted,2021.

[3] V. Mkrtchyan. “A remark on the Petersen coloring conjecture of Jaeger”, Australas. J. Combin.,
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A generalization of Bring’s curve in any characteristic
Marco Timpanella

Università degli Studi di Perugia (Italy)

Joint work with: Gábor Korchmáros and Stefano Lia

Abstract
Bring’s curve is well known from classical geometry as being the curve

with the largest automorphism group among all genus 4 complex curves. In
this talk, I will describe a natural generalization of Bring’s curve valid over
any field of zero or positive characteristic, that is the algebraic variety defined
as the intersection of the projective algebraic hypersurfaces of homogeneous
equations xk

1 + · · ·+ xk
m = 0 with 1 ≤ k ≤ m− 2. I will also point out a

connection with the previous work of Rédei [1], as well as with a more recent
result of Rodríguez Villegas, Voloch and Zagier [2] on plane curves attaining
the Stöhr-Voloch bound, and the regular sequence problem for systems of
diagonal equations introduced by Conca, Krattenthaler and Watanabe [3].

Keywords: Algebraic curves, positive characteristic, automorphism groups.
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Infinite graph factorizations
Tommaso Traetta

University of Brescia (Italy) — DICATAM

Joint work with: Simone Costa

Abstract
Over the past few years, there has been considerable interest in classic

designs on an infinite set of points, mainlywith block size three [1, 5]. However,
only lately the general problems of factorizing infinite graphs, or finding a
resolution of infinite-graph decompositions have been considered [2, 3].

In this talk, we outline some recent results [3, 4] and emphasize some open
questions on the existence of factorizations of the Rado graph and infinite
Cayley graphs.

Keywords: Graph factorization; Rado graph; Infinite (Cayley) graph; Regular 1-factorization

References
[1] P. J. Cameron, B. S.Webb. “Perfect countably infinite Steiner triple systems”, Australas. J. Combin.,
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[3] S. Costa, T. Traetta. “Factorizing the Rado graph and infinite complete graphs”, submitted
(arXiv:2103.11992).

[4] S. Costa, T. Traetta. “Vertex-regular 1-factorizations in infinite graphs”, J. Combin. Des.,
30:354–363, 2022.

[5] P. Danziger, D. Horsley, B. S. Webb. “Resolvability of infinite designs”, J. Combin. Theory Ser. A,
123:73–85, 2014.

137



Ivona
Traunkar13

8
5

3
2

21st
1 1 Combinatorics 2022

Mantova, Italy, 30 May – 3 June 2022

M
SC

(2
01

0)
:0

5E
18

,9
4B

05
,2

0D
08

,0
5B

05
,0

5E
30

M
SC

(2
01

0)
:0

5E
18

,9
4B

05
,2

0D
08

,0
5B

05
,0

5E
30

Weakly p-self-orthogonal designs and LCD codes
Ivona Traunkar

Univesity of Rijeka (Croatia) — Faculty of Mathematics

Joint work with: Vedrana Mikulić Crnković

Abstract
A 1-design is weakly p-self-orthogonal if all the block intersection num-

bers gives the same residue modulo p. In [1], we analyze extensions of the
incidence matrix, orbit matrix and submatrices of orbit matrix of a weakly
p-self-orthogonal 1-design in order to construct self-orthogonal codes.

A linear codes is called LCD code if the intersection with its dual code
is trivial. MatrixG generates an LCD code if and only if det(G · GT ) 6= 0
(see [3]). We extend the methods of construction described in [1] in order
to construct LCD codes over finite fields. We use suitable extensions of in-
cidence matrix, orbit matrices and submatrices of orbit matrices in order to
construct LCD codes over finite field. We will present examples of LCD codes
constructed fromweakly p-self-orthogonal designs obtained from groups using
construction described in [2].

Keywords: design, self-orthogonal design, LCD code

References
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[2] D. Crnković, V. Mikulić Crnković, A. Švob, “On some transitive combinatorial structures constructed
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[3] J. L. Massey, “ Linear codes with complementary duals”, Discrete Math. 106/107: 337-342,
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A large family of maximum scattered linear sets of
PG(1, qn) and their associatedMRD codes

Rocco Trombetti
University of Naples Federixo II (Italy)

Department of Mathematics and its Applications ”R. Caccioppoli”
Joint work with: G. Longobardi, G. Marino and Y. Zhou

Abstract
The concept of linear set in projective spaces over finite fields was intro-

duced by Lunardon [1] and it plays central roles in the study of blocking sets,
semifields, rank-metric codes, and other geometric structures. A linear set with
the largest possible cardinality and rank, is called maximum scattered.

Despite two decades of study, there are only a limited number of maximum
scattered linear sets of a linePG(1, qn). In this talk, we will exhibit a family
of new maximum scattered linear sets ofPG(1, qn) for any even n ≥ 6 and
odd q, which is considerably larger than classes known so far. Moreover, we
will elaborate on maximum rank-distance codes ensuing from the constructed
linear sets.

Keywords: Linear Set, Rank Distance Code, Linearized Polynomial

References
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The Effect of Symmetry-preserving Operations on the
3-Connectedness of Embedded Graphs

Heidi Van den Camp
Ghent University (Belgium) — Department of Applied Mathematics,

Computer Science and Statistics

Abstract
Symmetry-preserving operations have been studied for a very long time.

However only recently a general approach was presented to describe all ‘local
(orientation-preserving) symmetry-preserving operations, l(op)sp-operations
for short [1]. Many well-known and used operations such as the dual, ambo
and truncation are lopsp-operations. For plane graphs it is known that all
lopsp-operations preserve 3-connectedness, but for graphs of higher genus that
is not the case. The most striking example of a lopsp-operation that can greatly
reduce the connectivity of a graph is the dual. We use the new description of
symmetry-preserving operations to determine for any lopsp-operation whether
it preserves 3-connectedness in all embedded graphs or not.

Keywords: local symmetry-preserving operations; lopsp-operations; topological graph theory;
connectivity

References
[1] Gunnar Brinkmann, Pieter Goetschalckx, Stan Schein. “Comparing the constructions of Goldberg,
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Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 473(2206):20170267, 2017.
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Isomorphism-free enumeration of polycyclic
hydrocarbons using blueprint generation

Steven Van Overberghe
Ghent University (Belgium) — Department of applied mathematics,

computer science and statistics
Joint work with: Gunnar Brinkmann

Abstract
There exists a number of general approaches for the isomorphism-free

enumeration of combinatorial structures, including orderly generation, the
homeomorphism-principle, the canonical construction path method, etc. All of
them have certain advantages and disadvantages which prohibit using them
for every enumeration problem.

A (combinatorial) polycyclic hydrocarbon is a plane graph where every
face (except the outer face) is either a hexagon or a pentagon, and every vertex
has either degree 2 or 3, the former vertices all lying in the outer face. They can
also be thought of as patches cut out of fullerenes.

In this talk, we present a novel enumeration technique called blueprint
generation and apply it to the enumeration of polycyclic hydrocarbons having a
fixed number of carbons and hydrogens (vertices of degree 3 or 2 respectively).

Keywords: Structure generation, isomorphism rejection, graph theory
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Schematic 4-designs
Renata Vlahović Kruc

University of Zagreb (Croatia) — Faculty of Science

Joint work with: Vedran Krčadinac

Abstract
A t-(v, k, λ) design is said to be quasi-symmetric if it has only two block

intersection numbers. It is known that t can be at most 4 [2] and the only
quasi-symmetric 4-designs are the derived Witt design 4-(23, 7, 1) and its
complement [1]. Regarding designs with three intersection numbers, t can
be at most 5 and the only examples are hypothesized to be the Witt design
5-(24, 8, 1) and its complement [3].

We study 4-designs with three intersection numbers. By the Cameron-
Delsarte theorem, the blocks form a symmetric association scheme with three
classes. This imposes strong restrictions on the parameters of such designs. We
calculate the eigenvalues of the association scheme from the design parameters
and determine all admissible parameters with at most 1000 points. An infinite
family of admissible parameters is discovered.

Keywords: combinatorial design; association shemes

References
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Designs in polar spaces
Alfred Wassermann

University of Bayreuth (Germany) — Department of Mathematics

Joint work with: Michael Kiermaier, Kai-Uwe Schmidt

Abstract
Combinatorial designs have been studied since the 19th century and have

famous applications in the design of experiments and in coding theory. 50
years ago, Cameron, Delsarte and Ray-Chaudhury introduced the notion of
subspace designs, also known as q-analogs of designs or designs over finite
fields. Roughly speaking, q-analogs of objects arise from their combinatorial
counterparts by replacing subsets by subspaces and cardinalities by dimensions.

A next natural generalization of subspace designs are designs in finite clas-
sical polar spaces. For t = 1 and λ = 1 these objects are known as spreads.
For t > 1 the first – non-trivial – such designs were found by De Bruyn and
Vanhove in 2012, some more designs appeared recently in the PhD thesis of
Lansdown.

In this talk we will give an overview on the few known structural results
for designs in classical polar spaces and present quite a few new parameters of
designs found by computer search.

Keywords: combinatorial designs; subspace designs; finite classical polar space; finite field
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Density of free codes over finite chain rings
Violetta Weger

Technical University of Munich (Germany) — Department of Electrical
Engineering

Joint work with: Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria

Abstract
Ring-linear coding theory has recently gained a lot of (renewed) interest

due to possible applications in code-based cryptography. However, many im-
portant questions regarding codes over rings have not yet been answered. For
example: how likely is it that a random code over a finite chain ring is free? Or
how likely is it that a random code achieves the Gilbert-Varshamov bound? In
this talk we aim at giving answers to such questions by computing the density
of free codes over finite chain rings. We focus on the asymptotics with respect
to different parameters (such as the code length or the residue field size), which
will give completely different answers. Finally, we remark that these computa-
tions have a surprising but interesting intersection with number theory, namely
with the Gordon-Andrews identity.

Keywords: Ring-Linear Codes, q-series, Densities
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Packings and Steiner systems in polar spaces
Charlene Weiß

Paderborn University (Germany) — Department of Mathematics

Joint work with: Kai-Uwe Schmidt

Abstract
A finite classical polar space of rank n consists of the totally isotropic

subspaces of a finite vector space equipped with a nondegenerate form such
that n is the maximal dimension of such a subspace. A t-Steiner system in
a finite classical polar space of rank n is a collection Y of totally isotropic
n-spaces such that each totally isotropic t-space is contained in exactly one
member of Y . Nontrivial examples are known only for t = 1 and t = n− 1.
We give an almost complete classification of such t-Steiner systems, showing
that such objects can only exist in some corner cases. This classification result
arises from a more general result on packings in polar spaces, which we obtain
by studying the association scheme arising from polar spaces and applying the
powerful linear programming method from Delsarte.

Keywords: polar spaces, association schemes, coding theory, linear programming
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Hamiltonian cycles and 1-factors in
5-regular graphs
Carol T. Zamfirescu

Ghent University (Belgium) — Appl. Math., Comp. Sci. and Statistics

Joint work with: Nico Van Cleemput

Abstract
This talk, based on [1], revolves around proper edge-colourings of regular

graphs in which certain colour pairs form hamiltonian cycles—such a pair
is called perfect. We will be particularly interested in the 5-regular case. We
begin by presenting a theorem which solves Kotzig’s problem asking whether
planar 5-regular graphs exist admitting an edge-colouring in which all ten
pairs are perfect. In fact, we show that the number of solutions to Kotzig’s
problem grows at least exponentially. In the second part of the talk, we focus
on counting edge-colourings with a certain number of perfect pairs in planar
4-connected 5-regular graphs.

Keywords: Planar; regular; 1-factor; edge-colouring; hamiltonian
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Disjoint odd circuits in a bridgeless cubic graph can
be quelled by a single perfect matching

Jean Paul Zerafa
Univerzita Komenského v Bratislave (Slovakia) — Department of

Computer Science
Joint work with: František Kardoš and Edita Máčajová

Abstract
Let G be a bridgeless cubic graph. The Berge–Fulkerson Conjecture

(1970s) states that G admits a list of six perfect matchings such that each
edge ofG belongs to exactly two of these perfect matchings. If answered in the
affirmative, two other recent conjectures would also be true: the Fan–Raspaud
Conjecture (1994), which states thatG admits three perfect matchings such
that every edge of G belongs to at most two of them; and a conjecture by
Mazzuoccolo (2013), which states thatG admits two perfect matchings whose
deletion yields a bipartite subgraph of G. It can be shown that given an ar-
bitrary perfect matching ofG, it is not always possible to extend it to a list of
three or six perfect matchings satisfying the statements of the Fan–Raspaud
and the Berge–Fulkerson conjectures, respectively. In this talk, we show that
given any 1+-factor F (a spanning subgraph ofG such that its vertices have
degree at least 1) and an arbitrary edge e of G, there always exists a perfect
matching M of G containing e such that G \ (F ∪ M) is bipartite. Our
result implies Mazzuoccolo’s conjecture, but not only. It also implies that given
any collection of disjoint odd circuits inG, there exists a perfect matching of
G containing at least one edge of each circuit in this collection.

Keywords: factor, perfect matching, snark, S4-Conjecture, Fan–Raspaud Conjecture, Berge–
Fulkerson Conjecture
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Linear sets defined by few points
Ferdinando Zullo

Università degli Studi della Campania “Luigi Vanvitelli” (Italy)

Joint work with: Vito Napolitano, Olga Polverino and Paolo Santonastaso

Abstract
A point set L of Λ = PG(V,Fqn) = PG(r − 1, qn) is said to be an

Fq-linear set of Λ of rank k if it is defined by the non-zero vectors of a k-
dimensional Fq-vector subspaceU of V , i.e.

L = LU := {〈u〉Fqn
: u ∈ U \ {0}}.

For any subspace S = PG(Z,Fqn) of Λ, the weight of S in LU is defined
aswLU

(S) = dimFq(U ∩ Z). In this talk we will see some results on linear
setsLU in PG(r − 1, qn) of rank k ≤ (r − 1)n containing r independent
pointsP1, . . . , Pr such that

wLU
(P1) + . . .+ wLU

(Pr) = k.

We will see some characterizations of these linear sets, bounds on their rank
and constructions, using multi-orbit cyclic subspace codes. Then we will give a
polynomial representation of those linear sets having rank n and we will see
the dual of these linear sets, which have few intersection numbers with respect
to the hyperplanes. Therefore they also define linear rank metric codes with
few weights. The talk is based on the two papers [1, 2].

Keywords: Linear set; subspace codes; rank metric code.
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Ortho-Grassmann graphs of finite-rank self-adjoint
operators
Mariusz Żynel

University of Białystok (Poland) — Faculty of Mathematics

Joint work with: Mark Pankov and Krzysztof Petelczyc

Abstract
In a complex Hilbert space H we examine the ortho-Grassmann graph

Γ⊥
k (H) whose vertices are k-dimensional subspaces ofH and two such sub-

spaces are connected by an edge if they are compatible and adjacent (see [2]).
We prove that every automorphism of Γ⊥

k (H) is induced by a unitary or anti-
unitary operator, except the case dimH = 2k. If dimH = 2k ≥ 6, then
additionally, compositions of such automorphisms and the orthocomplement-
ary map are possible. The statement fails for dimH = 2k = 4.

Our result can be expressed in terms of projections of rank k. Applying
a characterization of adjacency in terms of ortho-adjacency and an analogue
of Chow’s theorem for conjugacy classes of finite-rank self-adjoint operators
proved in [1], we extend our result on generalised ortho-Grassmann graphs
associated to such conjugacy classes.

Keywords: Grassmann graph; graph automorphism; finite rank self-adjoint operator; commutativity
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general linear groups,”71, Vedran Krčadinac, “Polarity transformations of semipartial geometries,”89, Stefano Lia,
“Quasi-Hermitian varieties in PG(3, q2),”92, Giusy Monzillo, “Characterization of association schemes arising
from finite geometry,”104, Marko Orel, “Complementary prisms: their cores, automorphism groups, isoperimetric
numbers, hamiltonian properties, etc.,”111, Kai-Uwe Schmidt, “Designs in finite general linear groups,”129, Ivona
Traunkar, “Weakly p-self-orthogonal designs and LCD codes,”138, Renata Vlahović Kruc, “Schematic 4-
designs,”142, Charlene Weiß, “Packings and Steiner systems in polar spaces,”145

Algebraic combinatorics/Group actions on combinatorial structures (05E18), Krzysztof Petelczyc, “Auto-
morphisms of generalized Grassmann graphs,”121, Ivona Traunkar, “Weakly p-self-orthogonal designs and LCD
codes,”138, Mariusz Żynel, “Ortho-Grassmann graphs of finite-rank self-adjoint operators,”149

Algebraic number theory: global fields/Density theorems (11R45), Gábor Korchmáros, “(k, n)-arcs and algebraic
curves,”88

Arithmetic algebraic geometry (Diophantine geometry)/Abelian varieties of dimension> 1 (11G10), Alejandro
J. Giangreco Maidana, “Weil polynomials of abelian varieties over finite fields with many rational points,”76

Arithmetic algebraic geometry (Diophantine geometry)/Curves over finite and local fields (11G20), Elena
Berardini, “On the number of rational points of curves over a surface in P3,”45

Arithmetic algebraic geometry (Diophantine geometry)/Elliptic curves over global fields (11G05), Annamaria
Iezzi, “Finding cycles in supersingular isogeny graphs,”81

Arithmetic problems. Diophantine geometry/Applications to coding theory and cryptography (14G50),
Yves P. Aubry, “Polynomials with maximal differential uniformity and the exceptional APN conjecture,”41, Matteo
Bonini, “Saturating systems in the rank metric,”48
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Arithmetic problems. Diophantine geometry/Finite ground fields (14G15), Alejandro J. Giangreco Maidana,
“Weil polynomials of abelian varieties over finite fields with many rational points,”76

Arithmetic problems. Diophantine geometry/Rational points (14G05), Elena Berardini, “On the number of
rational points of curves over a surface in P3,”45, Alejandro J. Giangreco Maidana, “Weil polynomials of abelian
varieties over finite fields with many rational points,”76

Arithmetic rings and other special rings/Principal ideal rings (13F10), Giulia Cavicchioni, “Linear equations for
the weight distribution of codes over finite chain rings,”58

Axiomatics, foundations, philosophy/Logical foundations of quantum mechanics; quantum logic (81P10),
Krzysztof Petelczyc, “Automorphisms of generalizedGrassmann graphs,”121, MariuszŻynel, “Ortho-Grassmann
graphs of finite-rank self-adjoint operators,”149

Basic linear algebra/Multilinear algebra, tensor products (15A69), Giovanni Longobardi, “(d,σ)-Veronese
variety and (almost) MDS codes,”93

Communication, information/Cryptography (94A60), Laura M Johnson, “Internal and External Partial Difference
Families,”84

Computability and recursion theory/Hierarchies (03D55), Annachiara Korchmaros, “Best match graphs and
generalizations,”87

Curves/Algebraic functions; function fields (14H05), Vincenzo Pallozzi Lavorante, “New result on
permutation binomials,”113, Marco Timpanella, “A generalization of Bring’s curve in any characteristic,”136

Curves/Automorphisms (14H37), Marco Timpanella, “A generalization of Bring’s curve in any characteristic,”136

Curves/Plane and space curves (14H50), Elena Berardini, “On the number of rational points of curves over a surface
in P3,”45

Designs and configurations/Block designs (05B05), Paola Bonacini, “Edge balanced star-hypergraph designs and
vertex colorings of path designs,”47, Marco Buratti, “A Spot for Strong Difference Families,”52, Charles J. Col-
bourn, “Egalitarian Popularity Labellings for Steiner Systems,”61, Anamari Nakić, “Looking for additive Steiner
2-designs,”107, Marco Pavone, “Small configurations and some structure theorems for Steiner triple systems,”119,
Ivona Traunkar, “Weakly p-self-orthogonal designs and LCD codes,”138, Renata Vlahović Kruc, “Schematic
4-designs,”142

Designs and configurations/Difference sets (number-theoretic, group-theoretic, etc.) (05B10), Marco
Buratti, “A Spot for Strong Difference Families,”52, Laura M Johnson, “Internal and External Partial Difference
Families,”84, Anamari Nakić, “Looking for additive Steiner 2-designs,”107

Designs and configurations/Finite geometries (05B25), Nicola Durante, “σ-geometries of finite projective spaces,”23,
Sam Adriaensen, “Stability of EKR Theorems in Circle Geometries,”38, Charles J. Colbourn, “Egalitarian
Popularity Labellings for Steiner Systems,”61, Jan De Beule, “An Erdős-Ko-Rado problem on flags of finite spherical
buildings,”65, Lins Denaux, “Higgledy-piggledy sets in projective spaces,”68, JozefienD’haeseleer, “New examples
of Cameron-Liebler sets in hyperbolic quadrics,”70, Giovanni G. Grimaldi, “Absolute points of correlations of
PG(5, qn),”78, Tamás Héger, “Minimal codes, strong blocking sets and higgledy-piggledy lines,”80, Gábor Korch-
máros, “(k, n)-arcs and algebraic curves,”88, Stefano Lia, “Quasi-Hermitian varieties inPG(3, q2),”92, Jonathan
Mannaert, “A modular equality for Cameron-Liebler line classes in PG(n, q), n ≥ 7 odd,”96, Sam Mattheus,
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“The cylinder conjecture and divisible codes,”99, Vito Napolitano, “On some linear sets in finite projective spaces
and the associated codes,”108, Silvia M.C. Pagani, “Ghosts arising from polynomials,”112, Francesco Pavese, “On
m-ovoids of elliptic quadrics,”118, Olga Polverino, “Minimum size linear sets and critical pairs,”122, Assia P.
Rousseva, “Ternary Linear Codes and Blocking Sets in PG(5, 3),”126, John Sheekey, “Cyclic Line Spreads and
Linear Spaces,”130, Valentino Smaldore, “Partial ovoids of symplectic and Hermitian polar spaces, large cocliques
in the collinearity graph and applications,”132, Alfred Wassermann, “Designs in polar spaces,”143, Ferdinando
Zullo, “Linear sets defined by few points,”148

Designs and configurations/General (05B99), Paulien Jansen, “Substructures in long root geometries,”82, Kai-Uwe
Schmidt, “Designs in finite general linear groups,”129

Designs and configurations/Matrices (incidence, Hadamard, etc.) (05B20), Simone Costa, “On the number
of non-isomorphic (simple) k-gonal biembeddings of complete multipartite graphs,”62, James A Davis, “Partial
difference sets in nonabelian groups,”64, Jonathan Mannaert, “A modular equality for Cameron-Liebler line classes
in PG(n, q), n ≥ 7 odd,”96, Lorenzo Mella, “On the existence of globally simple relative non-zero sum Heffter
arrays,”101, Anita Pasotti, “On non-zero sum Heffter arrays,”116

Designs and configurations/Matroids, geometric lattices (05B35), Gianira N. Alfarano, “q-Matroids and
rank-metric codes,”40

Designs and configurations/Orthogonal arrays, Latin squares, Room squares (05B15), Gábor P. Nagy,
“Simplicity conditions for binary orthogonal arrays,”106

Designs and configurations/Other designs, configurations (05B30), Harald Gropp, “Il mantovano Vittorio
Martinetti (1859-1936) and the future of configurations,”79, Vedran Krčadinac, “Polarity transformations of
semipartial geometries,”89, Francesca Merola, “On anti-Novák cycle systems,”102, Klara Stokes, “Rigidity and
flexibility of rod configurations,”133

Designs and configurations/Tessellation and tiling problems (05B45), Magdalena Łysakowska, “On the
structure of cube tilings,”94

Designs and configurations/Triple systems (05B07), Francesca Merola, “On anti-Novák cycle systems,”102, Marco
Pavone, “Small configurations and some structure theorems for Steiner triple systems,”119

Discrete geometry/Rigidity and flexibility of structures (52C25), Klara Stokes, “Rigidity and flexibility of rod
configurations,”133

Discrete geometry/Tilings in n dimensions (52C22), Magdalena Łysakowska, “On the structure of cube tilings,”94

Discrete mathematics in relation to computer science/Combinatorics on words (68R15), Margherita Maria
Ferrari, “Homology of directed graphs with application to DNA recombination,”73

Enumerative combinatorics/Combinatorial identities, bijective combinatorics (05A19), LorenzoCampioni,
“Maximal Unrefinable Partitions into Distinct Parts,”53, Stefano Capparelli, “Combinatorial identities of the
Rogers-Ramanujan type,”54, Emanuele Munarini, “Carlitz-like identities,”105

Enumerative combinatorics/Combinatorial inequalities (05A20), Ivan N. Landjev, “Binary Non-linear Codes
with Two Distances,”91

Enumerative combinatorics/Partitions of integers (05A17), Lorenzo Campioni, “Maximal Unrefinable Partitions
into Distinct Parts,”53, Stefano Capparelli, “Combinatorial identities of the Rogers-Ramanujan type,”54
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Enumerative combinatorics/Partitions of sets (05A18), Giovanni Falcone, “Permutations of zero-sum k-sets,”72

Enumerative combinatorics/Permutations, words, matrices (05A05), Ivan N. Landjev, “Binary Non-linear Codes
with Two Distances,”91

Enumerative combinatorics/Umbral calculus (05A40), Emanuele Munarini, “Carlitz-like identities,”105

Extremal combinatorics/Extremal set theory (05D05), Jonad Pulaj, “4-sets in Union-Closed Families,”123

Extremal combinatorics/General (05D99), Alena Ernst, “Intersecting theorems for finite general linear groups,”71

Extremal combinatorics/Ramsey theory (05D10), Anurag Bishnoi, “The minimum degree of minimal Ramsey graphs
for cliques,”46, Valentino Smaldore, “Partial ovoids of symplectic and Hermitian polar spaces, large cocliques in the
collinearity graph and applications,”132

Field extensions/General (12F99), Olga Polverino, “Minimum size linear sets and critical pairs,”122

Finite fields and commutative rings (number-theoretic aspects)/Algebraic coding theory; cryptography
(11T71), Gianira N. Alfarano, “q-Matroids and rank-metric codes,”40, Yves P. Aubry, “Polynomials with
maximal differential uniformity and the exceptional APN conjecture,”41, Matteo Bonini, “Saturating systems
in the rank metric,”48, Annamaria Iezzi, “Finding cycles in supersingular isogeny graphs,”81, Daniel Panario,
“Comparing balanced Zv-sequences obtained from ElGamal function to random balanced sequences,”114, Rocco
Trombetti, “A large family of maximum scattered linear sets of PG(1, qn) and their associated MRD codes,”139,
Violetta Weger, “Density of free codes over finite chain rings,”144

Finite fields and commutative rings (number-theoretic aspects)/Arithmetic theory of polynomial rings over
finite fields (11T55), Vincenzo Pallozzi Lavorante, “New result on permutation binomials,”113

Finite fields and commutative rings (number-theoretic aspects)/Cyclotomy (11T22), Laura M Johnson, “Internal
and External Partial Difference Families,”84

Finite fields and commutative rings (number-theoretic aspects)/Polynomials (11T06), Bence Csajbók, “Functions
over finite fields and their applications,”22, Yves P. Aubry, “Polynomials with maximal differential uniformity
and the exceptional APN conjecture,”41, Silvia M.C. Pagani, “Ghosts arising from polynomials,”112, Vincenzo
Pallozzi Lavorante, “New result on permutation binomials,”113, Daniel Panario, “Comparing balanced
Zv-sequences obtained from ElGamal function to random balanced sequences,”114, Rocco Trombetti, “A large
family of maximum scattered linear sets of PG(1, qn) and their associated MRD codes,”139

Finite geometry and special incidence structures/Affine and projective planes (51E15), Silvia M.C. Pagani,
“Ghosts arising from polynomials,”112

Finite geometry and special incidence structures/Blocking sets, ovals, k-arcs (51E21), BenceCsajbók, “Functions
over finite fields and their applications,”22, Angela Aguglia, “On certain quasi-Hermitian varieties and related
questions,”39, Martino Borello, “Small strong blocking sets by concatenation,”49, Arne Botteldoorn, “Minimal
blocking sets in small Desarguesian projective planes,”50, LinsDenaux, “Higgledy-piggledy sets in projective spaces,”68,
Tamás Héger, “Minimal codes, strong blocking sets and higgledy-piggledy lines,”80, Gábor Korchmáros, “(k, n)-
arcs and algebraic curves,”88, Alessandro Neri, “Strong blocking sets and minimal codes from graphs,”110

Finite geometry and special incidence structures/Buildings and the geometry of diagrams (51E24), Jan De
Beule, “An Erdős-Ko-Rado problem on flags of finite spherical buildings,”65, Anneleen De Schepper, “The Segre
variety S2,2(K) in a geometry of type E6,1(K),”69
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Finite geometry and special incidence structures/Combinatorial structures in finite projective spaces
(51E20), Bence Csajbók, “Functions over finite fields and their applications,”22, Nicola Durante, “σ-geometries
of finite projective spaces,”23, Sam Adriaensen, “Stability of EKR Theorems in Circle Geometries,”38, Martino
Borello, “Small strong blocking sets by concatenation,”49, Michela Ceria, “Near–MDS codes and caps,”59,
Jan De Beule, “An Erdős-Ko-Rado problem on flags of finite spherical buildings,”65, Maarten De Boeck, “The
weight distributions of linear sets in PG(1, q5),”66, Lins Denaux, “Higgledy-piggledy sets in projective spaces,”68,
Jozefien D’haeseleer, “New examples of Cameron-Liebler sets in hyperbolic quadrics,”70, Giovanni G. Grimaldi,
“Absolute points of correlations of PG(5, qn),”78, Dibyayoti Dhananjay Jena, “Linear sets without points of weight
one,”83, Gábor Korchmáros, “(k, n)-arcs and algebraic curves,”88, Giovanni Longobardi, “(d,σ)-Veronese
variety and (almost) MDS codes,”93, Giuseppe Marino, “New MRD codes from linear cutting blocking sets,”97,
Vito Napolitano, “On some linear sets in finite projective spaces and the associated codes,”108, Francesco Pavese,
“Onm-ovoids of elliptic quadrics,”118, Olga Polverino, “Minimum size linear sets and critical pairs,”122, Assia P.
Rousseva, “Ternary Linear Codes and Blocking Sets in PG(5, 3),”126, Alfred Wassermann, “Designs in polar
spaces,”143, Ferdinando Zullo, “Linear sets defined by few points,”148

Finite geometry and special incidence structures/Generalized quadrangles, generalized polygons (51E12),
Anurag Bishnoi, “The minimum degree of minimal Ramsey graphs for cliques,”46, György Kiss, “Girth-(bi)regular
graphs and finite geometries,”86, Giusy Monzillo, “Characterization of association schemes arising from finite
geometry,”104

Finite geometry and special incidence structures/Linear codes and caps in Galois spaces (51E22), Michela
Ceria, “Near–MDS codes and caps,”59, Mariusz Kwiatkowski, “The graph of 4-ary simplex codes of dimension
2,”90, Sam Mattheus, “The cylinder conjecture and divisible codes,”99, Silvia M.C. Pagani, “Ghosts arising from
polynomials,”112

Finite geometry and special incidence structures/Other finite incidence structures (51E30), Stefano Lia,
“Quasi-Hermitian varieties in PG(3, q2),”92

Finite geometry and special incidence structures/Spreads and packing problems (51E23), Valentina Pepe, “Linear
sets with points of weight larger than 1,”120, Paolo Santonastaso, “On subspace designs,”128, John Sheekey,
“Cyclic Line Spreads and Linear Spaces,”130, Charlene Weiß, “Packings and Steiner systems in polar spaces,”145

Finite geometry and special incidence structures/Steiner systems (51E10), Mario Galici, “Steiner loops of affine and
projective type,”75

Forms and linear algebraic groups/Bilinear and Hermitian forms (11E39), Simeon Ball, “The geometry of certain
error-correcting codes,”43

General commutative ring theory/Actions of groups on commutative rings; invariant theory (13A50),
Kristijan Tabak, “Hamiltonian graphs in Abelian 2-groups,”134

General field theory/Finite fields (field-theoretic aspects) (12E20), Daniel Panario, “Comparing balanced
Zv-sequences obtained from ElGamal function to random balanced sequences,”114, Valentina Pepe, “Linear sets with
points of weight larger than 1,”120

Geometric closure systems/Combinatorial geometries (51D20), Sam Mattheus, “The cylinder conjecture and
divisible codes,”99

Graph theory/Applications (05C90), Suliman Khan, “The line graph of Lollipop and Pan graphs,”85
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Graph theory/Coloring of graphs and hypergraphs (05C15), Marién Abreu, “Papillon graphs: perfect matchings,
Hamiltonian cycles and edge-colourings in cubic graphs,”37, Paola Bonacini, “Edge balanced star-hypergraph
designs and vertex colorings of path designs,”47, Nancy E. Clarke, “Achromatic Dominating Sets,”60, Simone
Costa, “On the number of non-isomorphic (simple) k-gonal biembeddings of complete multipartite graphs,”62, Edita
Máčajová, “Berge’s conjecture for cubic graphs with small colouring defect,”95, Lucia Marino, “On Voloshin
colorings in 3-hypergraph designs,”98, Martin Škoviera, “Snarks with resistance n and flow resistance 2n,”131,
Gloria Tabarelli, “H-colorings in cubic and r-regular graphs,”135, Carol T. Zamfirescu, “Hamiltonian cycles
and 1-factors in 5-regular graphs,”146, Jean Paul Zerafa, “Disjoint odd circuits in a bridgeless cubic graph can be
quelled by a single perfect matching,”147

Graph theory/Connectivity (05C40), Suliman Khan, “The line graph of Lollipop and Pan graphs,”85, Alessandro
Neri, “Strong blocking sets and minimal codes from graphs,”110, Jozef Rajník, “Decomposition of cubic graphs with
cyclic connectivity 6 and beyond,”125, Heidi Van den Camp, “The Effect of Symmetry-preserving Operations on the
3-Connectedness of Embedded Graphs,”140

Graph theory/Directed graphs (digraphs), tournaments (05C20), Annachiara Korchmaros, “Best match
graphs and generalizations,”87

Graph theory/Dominating sets, independent sets, cliques (05C69), Nancy E. Clarke, “Achromatic Dominating
Sets,”60, Alessandro Neri, “Strong blocking sets and minimal codes from graphs,”110

Graph theory/Enumeration in graph theory (05C30), Steven Van Overberghe, “Isomorphism-free enumeration
of polycyclic hydrocarbons using blueprint generation,”141

Graph theory/Eulerian and Hamiltonian graphs (05C45), Marién Abreu, “Papillon graphs: perfect match-
ings, Hamiltonian cycles and edge-colourings in cubic graphs,”37, Jan Goedgebeur, “Graphs with few hamilto-
nian cycles,”77, Suliman Khan, “The line graph of Lollipop and Pan graphs,”85, Marko Orel, “Complementary
prisms: their cores, automorphism groups, isoperimetric numbers, hamiltonian properties, etc.,”111, Kristijan Tabak,
“Hamiltonian graphs in Abelian 2-groups,”134, Carol T. Zamfirescu, “Hamiltonian cycles and 1-factors in
5-regular graphs,”146

Graph theory/Factorization, matching, partitioning, covering and packing (05C70), Marién Abreu,
“Papillon graphs: perfect matchings, Hamiltonian cycles and edge-colourings in cubic graphs,”37, Edita Máčajová,
“Berge’s conjecture for cubic graphs with small colouring defect,”95, Davide Mattiolo, “Highly edge-connected
r-regular graphs without r − 2 pairwise disjoint perfect matchings,”100, Martin Škoviera, “Snarks with resistance
n and flow resistance 2n,”131, Gloria Tabarelli, “H-colorings in cubic and r-regular graphs,”135, Tommaso
Traetta, “Infinite graph factorizations,”137, Carol T. Zamfirescu, “Hamiltonian cycles and 1-factors in 5-regular
graphs,”146, Jean Paul Zerafa, “Disjoint odd circuits in a bridgeless cubic graph can be quelled by a single perfect
matching,”147

Graph theory/Generalized Ramsey theory (05C55), Anurag Bishnoi, “The minimum degree of minimal Ramsey
graphs for cliques,”46

Graph theory/General (05C99), Paolo Cavicchioli, “An algorithmic method to compute plat-like Markov moves for
genus two 3-manifolds,”57

Graph theory/Graph algorithms (05C85), Jan Goedgebeur, “Graphs with few hamiltonian cycles,”77, Steven Van
Overberghe, “Isomorphism-free enumeration of polycyclic hydrocarbons using blueprint generation,”141
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Graph theory/Graph labelling (gracefulgraphs, bandwidth, etc.) (05C78), Dalibor Froncek, “Γ-supermagic
labelings ofCm�Cn,”74

Graph theory/Graph operations (line graphs, products, etc.) (05C76), Nancy E. Clarke, “Achromatic
Dominating Sets,”60, Marko Orel, “Complementary prisms: their cores, automorphism groups, isoperimetric
numbers, hamiltonian properties, etc.,”111

Graph theory/Graphs and abstract algebra (groups, rings, fields, etc.) (05C25), Robert F. Bailey, “On
strongly regular graphs with 136 vertices,”42, Matteo Cavaleri, “A spectral theory for gain graphs,”56, Stefano
Della Fiore, “On Sequences in Cyclic Groups with Distinct Partial Sums,”67

Graph theory/Graphs and linear algebra (matrices, eigenvalues, etc.) (05C50), Sam Adriaensen, “Stability
of EKR Theorems in Circle Geometries,”38, Francesco Belardo, “On graphs whose spectral radius does not exceed
3/

√
2,”44, Maurizio Brunetti, “Toward a solution of the Hoffmann Program for signed graphs,”51

Graph theory/Infinite graphs (05C63), Tommaso Traetta, “Infinite graph factorizations,”137

Graph theory/Isomorphism problems (reconstruction conjecture, etc.) and homomorphisms (sub-
graph embedding, etc.) (05C60), Marko Orel, “Complementary prisms: their cores, automorphism groups,
isoperimetric numbers, hamiltonian properties, etc.,”111

Graph theory/Paths and cycles (05C38), György Kiss, “Girth-(bi)regular graphs and finite geometries,”86, Lorenzo
Mella, “On the existence of globally simple relative non-zero sum Heffter arrays,”101, Anita Pasotti, “On non-zero
sum Heffter arrays,”116

Graph theory/Planar graphs; geometric and topological aspects of graph theory (05C10), Simone
Costa, “On the number of non-isomorphic (simple) k-gonal biembeddings of complete multipartite graphs,”62, Jan
Goedgebeur, “Graphs with few hamiltonian cycles,”77, Heidi VandenCamp, “TheEffect of Symmetry-preserving
Operations on the 3-Connectedness of Embedded Graphs,”140, Carol T. Zamfirescu, “Hamiltonian cycles and
1-factors in 5-regular graphs,”146

Graph theory/Signed and weighted graphs (05C22), Maurizio Brunetti, “Toward a solution of the Hoffmann
Program for signed graphs,”51, Chiara Cappello, “Frustration-critical signed graphs,”55, Matteo Cavaleri, “A
spectral theory for gain graphs,”56

Graph theory/Structural characterization of families of graphs (05C75), Chiara Cappello, “Frustration-
critical signed graphs,”55

Graphtheory/Vertexdegrees (05C07), CarolT.Zamfirescu, “Hamiltonian cycles and1-factors in 5-regular graphs,”146

Hypergeometric functions/Connections with groups and algebras, and related topics (33C80), Charlene
Weiß, “Packings and Steiner systems in polar spaces,”145

Incidence groups/Kinematic spaces (51J15), Stefano Pasotti, “Clifford-like parallelisms and their automorphisms,”117

Linear incidence geometry/General theory and projective geometries (51A05), Angela Aguglia, “On certain
quasi-Hermitian varieties and related questions,”39

Linear incidencegeometry/Incidencestructures imbeddable intoprojectivegeometries (51A45), Anneleen
De Schepper, “The Segre variety S2,2(K) in a geometry of type E6,1(K),”69
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Linear incidencegeometry/Polargeometry, symplecticspaces, orthogonalspaces (51A50), JozefienD’haeseleer,
“New examples of Cameron-Liebler sets in hyperbolic quadrics,”70, Francesco Pavese, “Onm-ovoids of elliptic quad-
rics,”118, Valentino Smaldore, “Partial ovoids of symplectic and Hermitian polar spaces, large cocliques in the
collinearity graph and applications,”132

Linear incidence geometry/Structures with parallelism (51A15), Stefano Pasotti, “Clifford-like parallelisms
and their automorphisms,”117

Low-dimensional topology/Relations with graph theory (57M15), Paolo Cavicchioli, “An algorithmic method
to compute plat-like Markov moves for genus two 3-manifolds,”57, Paola Cristofori, “From Kirby diagrams to
edge-colored graphs representing PL 4-manifolds,”63

Maps and general types of spaces defined by maps/Embedding (54C25), Simone Costa, “On the number of non-
isomorphic (simple) k-gonal biembeddings of complete multipartite graphs,”62

Mathematical biology in general/General biology and biomathematics (92B05), Margherita Maria Ferrari,
“Homology of directed graphs with application to DNA recombination,”73

Miscellaneous applications of functional analysis/Applications in biology and other sciences (46N60), Anna-
chiara Korchmaros, “Best match graphs and generalizations,”87

Other generalizations of groups/Loops, quasigroups (20N05), Mario Galici, “Steiner loops of affine and projective
type,”75

PL-topology/Triangulating manifolds (57Q15), Paola Cristofori, “From Kirby diagrams to edge-colored graphs
representing PL 4-manifolds,”63

Permutation groups/Computational methods (20B40), Tahseen Rabbani, “49,487,367,289: On enumeration and
computational construction of groups of order 1024,”124

Permutation groups/Finite automorphism groups of algebraic, geometric, or combinatorial struc-
tures (20B25), Robert F. Bailey, “On strongly regular graphs with 136 vertices,”42

Projective and enumerative geometry/Configurations and arrangements of linear subspaces (14N20),
Klara Stokes, “Rigidity and flexibility of rod configurations,”133

Representation theory of groups/Computational methods (20C40), Tahseen Rabbani, “49,487,367,289: On
enumeration and computational construction of groups of order 1024,”124

Representation theory of groups/Representations of finite groups of Lie type (20C33), Kai-Uwe Schmidt,
“Designs in finite general linear groups,”129

Representation theory of groups/Representations of finite symmetric groups (20C30), Alena Ernst, “Inter-
secting theorems for finite general linear groups,”71

Special classes of linear operators/Hermitian and normal operators (spectral measures, functional
calculus, etc.) (47B15), Krzysztof Petelczyc, “Automorphisms of generalized Grassmann graphs,”121,
Mariusz Żynel, “Ortho-Grassmann graphs of finite-rank self-adjoint operators,”149

Surfaces and higher-dimensional varieties/Hypersurfaces (14J70), Elena Berardini, “On the number of rational
points of curves over a surface in P3,”45
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Theory of error-correcting codes and error-detecting codes/Bounds on codes (94B65), Ivan N. Landjev, “Binary
Non-linear Codes with Two Distances,”91, Gábor P. Nagy, “Simplicity conditions for binary orthogonal arrays,”106,
Violetta Weger, “Density of free codes over finite chain rings,”144

Theory of error-correcting codes and error-detecting codes/Combinatorial codes (94B25), Ivan N. Landjev,
“Binary Non-linear Codes with Two Distances,”91

Theory of error-correcting codes and error-detecting codes/Geometric methods (including applications
of algebraic geometry) (94B27), Matteo Bonini, “Saturating systems in the rank metric,”48, Mariusz
Kwiatkowski, “The graph of 4-ary simplex codes of dimension 2,”90, Giovanni Longobardi, “(d,σ)-Veronese
variety and (almost) MDS codes,”93, Giuseppe Marino, “New MRD codes from linear cutting blocking sets,”97,
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